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Abstract

In this paper, we present a new Eulerian multi-fluid modeling for dense sprays of evaporating liquid droplets which

is able to describe droplet coalescence and size polydispersion as well as the associated size-conditioned dynamics. It is

an uncommon feature of Eulerian spray models which are required in a number of non-stationary simulations because

of the optimization capability of a solver coupling a Eulerian description for both phases. The chosen framework is the

one of laminar flows or the one of direct numerical simulations since no turbulence models are included in the present

study. The model is based on a rigorous derivation from the kinetic level of description (p.d.f. equation) and can be

considered as a major extension of the original sectional method introduced by Tambour et al. We obtain a set of

conservation equations for each ‘‘fluid’’: a statistical average of all the droplets in given size intervals associated to a

discretization of the size phase space. The coalescence phenomenon appears as quadratic source terms, the coefficients

of which, the collisional integrals, can be pre-calculated from a given droplet size discretization and do not depend on

space nor time. We validate this Eulerian model by performing several comparisons, for both stationary and non-

stationary cases, to a classical Lagrangian model which involves a stochastic algorithm in order to treat the coalescence

phenomenon. The chosen configuration is a self-similar 2D axisymmetrical decelerating nozzle with evaporating sprays

having various size distributions, ranging from smooth ones up to Dirac delta functions through discontinuous ones.

We show that the Eulerian model, if the discretization in the size phase space is fine enough (the problem is then 3D

unstationary, 2D in space and 1D in size), is able to reproduce very accurately the non-stationary coupling of evap-

oration, dynamics and coalescence. Moreover, it can still reproduce the global features of the behavior of the spray with

a coarse size discretization, which is a nice feature compared to Lagrangian approaches. The computational efficiency of
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both approaches are then compared and the Eulerian model is proved to be a good candidate for more complex and

realistic configurations.

� 2003 Elsevier Inc. All rights reserved.
1. Introduction

In a lot of industrial combustion applications such as Diesel engines, fuel is stocked in condensed form

and burned as a dispersed liquid phase carried by a gaseous flow. Two phase effects as well as the poly-

disperse character of the droplet distribution in sizes, since the droplets dynamics depend on their inertia

and are conditioned by size, can significantly influence flame structures, even in the case of relatively thin
sprays [1]. Size distribution effects are also encountered in a crucial way in solid propellant rocket boosters,

where the cloud of alumina particles experiences coalescence and become polydisperse in size, thus de-

termining their global dynamical behavior [2]. The coupling of dynamics, conditioned by particle size, with

coalescence or aggregation as well as with the eventual evaporation can also be found in the study of

fluidized beds [3], planet formation in solar nebulae [4,5]. Consequently, it is important to have reliable

models and numerical methods in order to be able to describe precisely the physics of two phase flows

where the dispersed phase is constituted of a cloud of particles of various sizes which can evaporate, co-

alesce or aggregate and finally which have their own inertia and size-conditioned dynamics. Since our main
area of interest is the one of combustion, we will work with sprays throughout the paper, keeping in mind

the broad application fields related to this study.

Spray models (where a spray is understood as a dispersed phase of liquid droplets, i.e. where the liquid

volume fraction is much smaller than one) have a common basis at what can be called ‘‘the kinetic level’’

under the form of a probability density function (p.d.f. or distribution function) satisfying a Boltzmann

type equation, the so-called Williams equation [6–8]. The variables characterizing one droplet are the size,

the velocity and the temperature, so that the total phase space dimension involved is usually of twice the

space dimension plus two. Such a transport equation describes the evolution of the distribution function of
the spray due to evaporation, to the drag force of the gaseous phase, to the heating of the droplets by the

gas and finally to the droplet–droplet interactions (such as coalescence and fragmentation phenomena)

[2,8–13]. The spray transport equation is then coupled to the gas phase equations. The two-way coupling of

the phases occurs first in the spray transport equations through the rate of evaporation, drag force and

heating rate, which are functions of the gas phase variables and second through exchange terms in the gas

phase equations.

There are several strategies in order to solve the liquid phase. A first choice is to approximate the p.d.f.

by a sample of discrete numerical parcels of particles of various sizes through a Lagrangian–Monte-Carlo
approach [2,9–11,14]. This approach has been widely used and has been shown to be efficient in a number

of cases. Its main drawback, that has shown recently to be a major one with the development of new

combustion chambers leading to combustion instabilities (lean premixed prevaporized combustor with

spray injection), is the coupling of a Eulerian description for the gaseous phase to a Lagrangian description

of the dispersed phase, thus offering limited possibilities of vectorization/parallelization and implicitation.

Moreover for unsteady computations, a large number of parcels in each cell of the computational domain is

generally needed, thus yielding large memory requirement and CPU cost.

This drawback makes the use of a Eulerian formulation for the description of the disperse phase at-
tractive, at least as a complementary tool for Lagrangian solvers, and leads to the use of moments methods

since the high dimension of the phase space prevents the use of direct numerical simulation on the p.d.f.

equation with deterministic numerical methods like finite volumes. Two classes have been considered be-

fore, the first of which is called ‘‘population balance’’ equations [15] for very small particles in the study of
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aerosols in chemical engineering; they provide precise and efficient numerical methods in order to follow the

size distribution of particles, without inertia, experiencing some aggregation-breakage phenomena (quad-

rature of moment methods [16,17]). However, the extension of such methods to sprays for which the inertia
determines the dynamical behavior of the droplets has not yet received a satisfactory answer. The second

type of moment method is the one of moments in the velocity variable without getting into the details of the

size distribution or at fixed droplet size: the two-fluid type models used for separated two-phase flows [18–

20]. The fact that no information is available on the droplet size distribution is generally too severe an

assumption in most applications. One possibility is to use a semi-fluid method based on velocity moment

closure of the probability density function at sampled sizes [13]. However, one of the main drawback of

most of the existing Eulerian models is the impossibility to treat droplet–droplet interactions because only a

finite number of sizes are present in the problem. The use of moments methods leads to the lost of some
information but the cost of such methods is usually much lower than the Lagrangian ones for two reasons,

the first one is related to the fact that the polydisperse character of the sprays is not described by the model

(the spray is mainly considered a mono-dispersed [12]) and the number of unknowns we solve for is very

limited; the second one is related to the high level of optimization one can reach when the two phases are

both described by a Eulerian model.

A first attempt at deriving a fully Eulerian model for sprays polydisperse in size in laminar configura-

tions with droplets having their own inertia, was developed by Tambour et al. [21]; the idea was to consider

the dispersed phase as a set of continuous media: ‘‘fluids’’, each ‘‘fluid’’ corresponding to a statistical av-
erage between two fixed droplet sizes, the section; the spray was then described by a set of conservation

equations for each ‘‘fluid’’. Greenberg et al. noticed in [21] that such a model has also its origin at the

kinetic level trying to make the link with the Williams spray equation [6]. However, they only provided a

partial justification, the complete derivation for the conservation of mass and number of droplets, the

momentum and energy equations being out of the scope of their paper; besides, the rigorous set of un-

derlying assumptions at the kinetic level was not provided. Finally, their coalescence model did not take

into account the relative velocity of colliding particles, thus making the model only suited for very small

particles like soots.
A comprehensive derivation of this approach was then provided by Laurent and Massot [8,22,23] for

dilute sprays without droplet–droplet interaction in laminar flows, thus yielding a rigorous ‘‘kinetic’’

framework, as well as a comparison between Eulerian and Lagrangian modeling. The assumptions un-

derlying the model were validated with experimental measurements on the test case of laminar spray dif-

fusion flames [24]. The idea is to take moments in the velocity variable at each droplet size and space

location for a given time: a set of conservation equation is obtained called the semi-kinetic model where the

phase space is reduced to the space location and droplet size. The obtained set of conservation equations on

the moments in velocity is equivalent to the original p.d.f. equation at the kinetic level under the as-
sumption that there exists a single characteristic velocity at a given space location and droplet size for a

given time, around which no dispersion is to be found (the underlying gaseous flow is laminar or the

configuration is the one of direct numerical simulations); even if the whole droplet sizes range is covered,

the support of the droplet distribution in the phase space is restricted to a 1D sub-manifold of Rd, pa-

rametrized by droplet size [8], d being the spatial dimension (it has to be noticed that the same kind of

model has been developed and validated in a turbulent framework, where the dispersion around the

characteristic velocity at each space location and droplet size is taken to be a variable of the problem in-

stead of being zero [25]). The resulting set of equations which is an extension of the pressureless gas dy-
namics [26,27] is then discretized in the size variable using a special version of finite volume techniques [28],

and we can thus preserve some level of information about the size distribution with a reasonable and

adaptive computational cost. If a good level of precision is required about the size distribution, the

computational cost is going to be lower but comparable to the Lagrangian one (however the optimization

of the solver through the fully Eulerian description of the two phases leads to a substantial gain in CPU
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time). The method is still able to capture the behavior of the spray with a coarse discretization in the size

phase space [24] and thus a low computational cost, an advantage in comparison with the Lagrangian

methods.
In this paper, relying on [8] for the multi-fluid approach analysis and on [29,30] for coalescence phe-

nomena modeling, we derive a Eulerian multi-fluid model for the description of sprays when coalescence is

present and thus extend the multi-fluid approach to dense sprays. For the sake of legibility of the paper, this

derivation is presented in a simplified framework: we do not take into account convective correction to the

vaporization rate and drag force, the unstationary heating of the droplets, as well as the lost of kinetic

energy through the coalescence phenomenon; these assumptions are not restrictive as will be explained in

the text. This model extension to dense sprays could seem difficult because of the assumption associated

with the Eulerian multi-fluid model which is not directly compatible with coalescence. The first step is then
to consider Gaussian velocity distributions at a given droplet size with a uniform dispersion. We then derive

a semi-kinetic model on the moments of the distribution with a continuous size variable as the limit of zero

velocity dispersion. The semi-kinetic model is discretized in fixed size intervals called the sections in order to

only treat a finite number of ‘‘fluids’’. We obtain a set of conservation equations on the mass and mo-

mentum of the spray for each section with quadratic terms describing the coalescence phenomenon [31], the

coefficients of which, the collisional integrals, do not depend on time nor space and can be pre-calculated

given a size discretization. We use the numerical method obtained from [32] for the discretization of the

conservation equations and the algorithm in order to obtain the pre-calculated collisional integrals is
presented.

We want to, firstly, validate this model by with a reference Lagrangian solver which uses an efficient and

already validated stochastic algorithm for the description of droplet coalescence [30]. We need a well-de-

fined configuration, both of stationary and unstationary laminar flows where evaporation, coalescence and

the dynamics of droplets of various sizes are coupled together. Secondly, we want to evaluate the validity of

the assumption underlying the model and the computational efficiency of this new approach as compared to

the Lagrangian solver. The configuration has to be complex enough in order to approach some realistic

configurations, but simple enough in order to limit the computational cost of the many calculations we
want to perform for comparison purposes. The chosen test-case is a decelerating self-similar 2D axisym-

metrical nozzle. The deceleration generates a velocity difference between droplets of various sizes and in-

duces coalescence. The temperature of the gas is taken high enough in order to couple the evaporation

process to the coalescence one. We consider three types of size distribution functions ranging from smooth

ones up to Dirac delta function representing some typical examples of what can be found in combustion

applications [24], in booster applications [2] for alumina particles or in chemical engineering. It is worth

noticing that such a problem is essentially 2D in space, 1D in the size phase space and unstationary, which

makes it equivalent to a 3D unstationary calculation which reduces to a 2D unstationary calculation be-
cause of the similarity of the flow. We validate the Eulerian multi-fluid model by showing the good cor-

respondence with the reference solution when the size phase space is finely discretized. It is also shown that

the behavior of the spray is correctly captured even if a limited number of ‘‘fluids’’ is used for the Eulerian

model corresponding to a coarser discretization in the size phase space. The computational efficiency of the

new model is then presented. If a good level of accuracy in the size phase space is required, the cost is lower

than the Lagrangian method but not much lower thus showing that, in such a case, the improvement

through the use of the Eulerian model is going to be achieved with the optimization of the solver coupling

the two Eulerian description. However, the Eulerian model allows an adaptable level of accuracy for the
size phase space discretization without having any trouble with the smoothness of the calculated solution

(an essential point for combustion applications), a feature which is not present with the Lagrangian solver.

We show that a coarse discretization allows to obtain a good qualitative description of the phenomenon; it

proves to be very computationally efficient compared to the reference Lagrangian solution and still allows

to take into account the polydisperse character of the spray. The level of code optimization that can be
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obtained from a global Eulerian description has already been demonstrated in the case of two-fluid models,

but the detailed study in the framework of Eulerian multi-fluid models is beyond the scope of the present

paper. Finally, the assumption that the velocity dispersion around its mean at a given time, for a given
space location and a given droplet size is zero, the Eulerian multi-fluid model relies on, is investigated by

considering the results from the Lagrangian solver.

The paper is organized as follows. We present in Section 2 a simplified version of the modeling of the

spray at the kinetic level, the purpose of the paper being the clear introduction to a new numerical

treatment of sprays. Section 3 is devoted to the exposition of the new Eulerian multi-fluid model. Only the

expressions of the intermediate semi-kinetic model and of the final set of conservation equations are

provided, the detailed proofs and technical details being presented in Appendices A and B. The numerical

methods for the automatic pre-calculation of the collisional integrals are given in Section 4. The validation
of the new multi-fluid model is conducted in Section 5, where the nozzle configuration is introduced, the

reference Lagrangian solver and the Eulerian multi-fluid one, described and the numerical results presented.

Section 6 is devoted to the discussion and conclusion about this new Eulerian multi-fluid model.
2. Modeling of the spray at the kinetic level

For the purpose of the legibility of the paper, we will present the derivation of the Eulerian multi-fluid
model for polydisperse evaporating sprays which experience coalescence from a simplified Williams

equation at the kinetic level of description [6]. This derivation can easily be extended to a more complex

model at the kinetic level as long as a kinetic description of the spray is available and possible; this issue is

discussed in the text.

2.1. Williams transport equation

Let us define the distribution function f a of the spray, where f aðt; x;/; u; T Þdxd/dudT denotes the
averaged number of droplets (in a statistical sense), at time t, in a volume of size dx around x, with a velocity

in a du-neighborhood of u, with a temperature in a dT -neighborhood of T and with a size in a d/-
neighborhood of /. The droplets are considered to be spherical and characterized by / ¼ aRa, where R is

the radius of the droplet; / can be the radius (a ¼ 1 and a ¼ 1; / ¼ R), the surface, (a ¼ 4p and a ¼ 2;

/ ¼ S) or the volume (a ¼ 4
3
p and a ¼ 3; / ¼ v). We will work with the volume in the following, f 3 will be

noted f .
For the sake of simplicity and for the purpose of this paper, we are going to consider that the evapo-

ration process is described by a d2 law without convective corrections, that the drag force is given by a
Stokes law, and finally that the unstationary heating of the droplets does not need to be modeled so that the

evaporation law coefficient does not depend on the heating status of the droplet. We refer to [2,33] and [8]

for more detailed droplet models for which the derivation can be easily extended.

The evolution of the spray is then described by the Williams transport equation [6]

otf þ u � oxf þ ovðRvf Þ þ ou � ðFf Þ ¼ C; ð2:1Þ

where Rv denoted the d2 law evaporation rate, F the Stokes drag force due to the velocity difference with the

gaseous phase, and C the collision operator leading to coalescence. These quantities have the following

dependence ðt; x; u; vÞ (except for C which is an integral operator depending on f ); they depend on the local
gas composition, velocity and temperature and this dependence is implicitly written in the ðt; xÞ dependence.

It has to be noticed, firstly, that there is an exact equivalence between the kinetic description and the

Lagrangian particulate description of all the droplets (when no droplet interaction nor history terms are to

be found) and, secondly, that the refinement of the drag, evaporation and heating models, can not go
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beyond a given limit in the context of a kinetic description. The added mass effect in the aerodynamical

forces can be described only through the addition of a new variable in the phase space which is the time

derivative of the velocity of the particle; in the applications we are considering, it is going to be negligible.
Actually, the history terms such as the Basset forces or the inner temperature distribution of a droplet in the

effective conductivity model [33] can not be modeled in the context of a kinetic description of the spray, as

already discussed in [8]. Moreover, following a droplet history, is not only incompatible with the de-

scription in terms of probability density functions, but it would be very difficult to justify the sampling of

the spray by a finite number of Dirac delta functions since the phase space in infinite dimensional. Con-

sequently, history terms cannot be accounted for except by augmenting the phase space dimension and by

introducing boundary layer variables, a subject beyond the scope of the present study.

As a conclusion, the derivation presented in the following on a simplified model, can be extended to
more refined droplet models as long as they do not include history terms. The coalescence model is de-

scribed in the next section.

2.2. Coalescence operator

The kinetic model for the collision operator leading to coalescence is taken from [29] and we neglect the

influence of the impact parameter on the probability of rebound of two collisional partners. We then as-

sume:
[Co1] We only take into account binary collisions (small volume fraction of the liquid phase).

[Co2] The mean collision time is very small compared to the intercollision time.

[Co3] Every collision leads to coalescence of the partners.

[Co4] During coalescence, mass and momentum are conserved.

Thus C ¼ Q�
coll þ Qþ

coll, where Q
�
coll and Qþ

coll, respectively, correspond to the quadratic integral operators

associated with creation and destruction of droplets due to coalescence. These quadratic operators read

[2,29]

Q�
coll ¼ �

Z
v�

Z
u�
f ðt; x; v; uÞf ðt; x; v�; u�ÞBðju� u�j; v; v�Þdv� du�; ð2:2Þ
Qþ
coll ¼

1

2

Z
v�2½0;v�

Z
u�
f ðt; x; v}ðv; v�Þ; u}ðv; v�; uÞÞf ðt; x; v�; u�ÞBðju} � u�j; v}; v�ÞJdv� du�; ð2:3Þ
Bðju� u�j; v; v�Þ ¼ bðv; v�Þju� u�j; bðv; v�Þ ¼ p
3v
4p

� �1=3
 

þ 3v�

4p

� �1=3
!2

; u} ¼ vu� v�u�

v� v�
; ð2:4Þ

where v} and u} are the pre-collisional parameters, v}ðv; v�Þ ¼ v� v� and J is the Jacobian of the transform

ðv; uÞ ! ðv}; u}Þ, at fixed ðv�; u�Þ: J ¼ ðv=v}Þd, with d the dimension of the velocity phase space.

Remark 2.1. The assumption that all collisions lead to the coalescence of the partners is not realistic, es-

pecially if the colliding droplets have comparable sizes [34,35]. In such situations the probability Ecoal, that

coalescence really occurs from the collision of two droplets has to be taken into account; the expression of B
then becomes

Bðju� u�j; v; v�Þ ¼ Ecoalðju� u�j; v; v�Þbðv; v�Þju� u�j:

The simplest model, originally obtained for water droplets, was proposed by Brazier-Smith et al. [34] and

reads
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Ecoalðju� u�j; v; v�Þ ¼ Min 1;
Fðv; v�Þ
ju� u�j2

 !
;

where the expression of F can be found in [34]. Consequently, the expression of Ecoal is not well-suited for

the derivation of our Eulerian multi-fluid model from the kinetic level of description. It is necessary to

obtain an approximation of Ecoal under the form

~Ecoalðju� u�j; v; v�Þ ¼
Xn
k¼0

akðju� u�jÞbkðv; v�Þ; ð2:5Þ

with a well-chosen set of functions ðak; bkÞk2½1;n�. A possible choice which leads to easy computations, is to
use a polynomial development

~Ecoalðju� u�j; v; v�Þ ¼
Xn
k¼0

ju� u�jkbkðv; v�Þ;

and to determine the functions ðbkÞk2½1;n� by minimizing the the quadratic functional

Lðb1; . . . ; bnÞ ¼
Z Umax

0

Xn
k¼0

bkðv; v�ÞW k � ~EcoalðW ; v; v�Þ2dW ;

where Umax is an estimate of the maximum relative velocity between two droplets; it has to be noticed that

the integral in the previous equation can be explicitly calculated, given an expression for F.

Since a statistical description of the spray is needed, and since Fðv; v�Þ rapidly becomes bigger than one

as the size difference of the coalescence partners increases, a very high degree of precision can be reached

with a limited degree of the considered polynomial (2.5).

Nevertheless, in the following, for the sake of simplicity, we will assume

Ecoalðju� u�j; v; v�Þ ¼ 1;

which is equivalent to assumption [Co3].
3. Eulerian multi-fluid model

In this section, we will recall the formalism and the associated assumptions introduced in [8] in order to

derive the Eulerian multi-fluid method and explain how this formalism can be extended in order to treat the

coalescence phenomenon between droplets having their own inertia governed by their size. It is worth

noticing that we do take into account the mean velocity difference of the droplets in the coalescence process
as opposed to the model proposed in [21] which is mainly suited for very small particles such as soots.

The derivation is conducted following two steps. The key idea is to reduce, in a first step, the size of the

phase space and to consider only the moments of order zero and one in the velocity variable at a given time,

a given position and for a given droplet size. The obtained conservation equations, called the semi-kinetic

model for the two fields nðt; x; vÞ ¼
R
f du and �uðt; x; vÞ ¼

R
fudu=nðt; x; vÞ, are only in a close form under a

precise assumption on the support of the original p.d.f. in the whole phase space: the velocity distribution at

a given time, given location and for a given droplet size is a Dirac delta function [8]. These conservation

equations are similar to the pressureless gas dynamics [26,27].
However, this assumption is not directly compatible with the coalescence phenomenon. In fact, we

obtain the semi-kinetic model in the limit of zero dispersion of a more general problem where dispersion is
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allowed. The obtained semi-kinetic model is then equivalent to a projection of the original p.d.f. model onto

a lower dimensional configuration.

At this level, we still describe a continuous and unbounded size phase space for the spray. The second
step consists in choosing a level of discretization for the droplet size phase space and to average the ob-

tained system of conservation laws over some fixed size intervals, each ‘‘fluid’’ corresponding to the set of

droplets in each size interval. It can be interpreted as a finite volume discretization in the size variable, the

order of which has been studied in [28] as far as the evaporation is concerned. The coalescence phenom-

enon, when taken into account, results in quadratic source terms in the Eulerian multi-fluid conservation

equations for the mass and momentum of each ‘‘fluid’’. The coefficients involved in these source terms are

collisional integrals; they do not depend on t, x or on the droplet size but only on the given droplet size

discretization. Consequently, they can be pre-calculated before the resolution of the system of conservation
laws is conducted.

3.1. Semi-kinetic model

Out of the assumptions related to the Eulerian multi-fluid model, it was shown in [8] that the velocity

dispersion of the spray distribution function at a given time, space location and droplet size has to be zero.

It is clear that this assumption is not directly compatible with the coalescence phenomenon, since there is no

reason for a droplet created by the coalescence of two droplets of various sizes, which is deduced from
momentum conservation, to exactly match the velocity corresponding to its new size. However, since the

Eulerian multi-fluid model can be considered as a projection of the original distribution function at the

kinetic level onto a 1D sub-manifold, we first relax the assumption of zero dispersion and assume Gaussian

velocity dispersion and handle the whole positive real line for the possible sizes so that all the collisions can

be described by the model: ðv; uÞ 2 ð0;þ1Þ � Rd. The semi-kinetic system of conservation laws is then

obtained by taking the limit of zero dispersion in the source terms coming from coalescence, uniformly in

ðt; x; vÞ.

Proposition 3.1. Let us make the following assumptions on the spray distribution function:

[H1] For a given droplet size, at a given point ðt; xÞ, there is only one characteristic averaged velocity

uðt; x; vÞ.
[H2] The velocity dispersion around the averaged velocity uðt; x; vÞ is zero in each direction, whatever the point

ðt; x; vÞ.
[H3] The droplet number density nðt; x; vÞ is exponentially decreasing at infinity as a function of v uniformly in

ðt; xÞ.
Assumptions [H1] and [H2] define the structure of f : f ðt; x; v; uÞ ¼ nðt; x; vÞdðu� �uðt; x; vÞÞ and the semi-

kinetic model is given by two partial differential equations in the variables nðt; x; vÞ and �uðt; x; vÞ:

otnþ ox � ðnuÞ þ ovðnRvÞ ¼ � nðvÞ
Z
v�2½0;þ1Þ

nðv�Þbðv; v�ÞI�n dv�

þ 1

2

Z
v�2½0;v�

nðv}ðv; v�ÞÞnðv�Þbðv}ðv; v�Þ; v�ÞIþn dv�; ð3:1Þ
otðnuÞ þ ox � ðnu� uÞ þ ovðnRvuÞ � nF ¼ � nðvÞ
Z
v�2½0;þ1Þ

nðv�Þbðv; v�ÞI�u dv�

þ 1

2

Z
v�2½0;v�

nðv}ðv; v�ÞÞnðv�Þbðv}ðv; v�Þ; v�ÞIþu dv�; ð3:2Þ
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where F is the Stokes’s drag force taken at u ¼ u, where Rv ¼ Rvðt; x; vÞ and where the partial collisional

integrals I�n , I
þ
n , I

�
u and Iþu are functions of ðt; x; v; v�Þ and take the following expressions:

I�n ¼ juðvÞ � uðv�Þj; I�u ¼ uðvÞjuðvÞ � uðv�Þj; ð3:3Þ
Iþn ¼ juðv�Þ � uðv� v�Þj; vIþu ¼ ðvð � v�Þuðv� v�Þ þ v�uðv�ÞÞjuðv�Þ � uðv� v�Þj: ð3:4Þ

Eqs. (3.1) and (3.2) express respectively, the conservation of the number density of droplets and their mo-

mentum, at a given location x and for a given size v.

The detail of the proof is given in Appendix A and the discussion about the assumption of zero dis-

persion in the velocity variable will be presented with the numerical simulation on the chosen test case in

Section 5.

Remark 3.2. It has to be notice that the coalescence source terms obtained in the system of conservation

equations does not conserve the kinetic energy of the droplets as can be easily shown by considering the

conservation equation on the second order moment in the velocity variable. It can be assumed that the

kinetic energy is dissipated during the coalescence phenomenon, during damped oscillations due to surface
tension forces for example, and results in some heating of the droplets. However, for the velocity and the

temperature range we are interested in, the change in the temperature of the droplets due to the dissipation

of the kinetic energy lost in the coalescence process is totally negligible.

3.2. Eulerian multi-fluid model

The Eulerian multi-fluid model, is based on the reduction of a continuous semi-kinetic equation as a

function of size, such as (3.1) and (3.2), to a finite number of degrees of freedom. This reduction is per-
formed by averaging, in fixed size intervals: the sections (the jth section being defined by vðj�1Þ

6 v < vðjÞ), of
the semi-kinetic model. As a fundamental assumption, the form of n as a function of the geometry is

supposed to be independent of t and x in a given section. Thus the evolution of the mass concentration of

droplets in a section mðjÞ is decoupled from the repartition in terms of sizes jðjÞðvÞ inside the section [21]:

nðt; x; vÞ ¼ mðjÞðt; xÞjðjÞðvÞ;
Z vðjÞ

vðj�1Þ
qlvj

ðjÞðvÞdv ¼ 1: ð3:5Þ

Besides, we make the following assumption on the velocity distribution inside a section:

[H4] In each section, the averaged velocity uðt; x; vÞ does not depend on v, uðt; x; vÞ ¼ uðjÞðt; xÞ, vðj�1Þ
6

v < vðjÞ.
The sections have fixed sizes, which is a major difference compared to a sampling method; however, they

are not independent from each other, they exchange mass and momentum. The choice of the discretization

points vðjÞ, j 2 ½1;N � has been studied in [24]; consequently we choose the ðN þ 1Þth section to be ½vðNÞ;þ1Þ
in order to be able to describe the whole size spectrum. The final model is then obtained in the next

proposition.

Proposition 3.3. Assuming [H1]–[H4], we obtain the multi-fluid system of 2ðN þ 1Þ conservation equations:

otmðjÞ þ ox � ðmðjÞuðjÞÞ ¼ �ðEðjÞ
1 þ EðjÞ

2 ÞmðjÞ þ Eðjþ1Þ
1 mðjþ1Þ þ CðjÞ

m ; ð3:6Þ
otðmðjÞuðjÞÞ þ ox � ðmðjÞuðjÞ � uðjÞÞ ¼ �ðEðjÞ þ EðjÞÞmðjÞuðjÞ þ Eðjþ1Þmðjþ1Þuðjþ1Þ þ mðjÞF ðjÞ þ CðjÞ ; ð3:7Þ
1 2 1 mu
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where EðjÞ
1 and EðjÞ

2 are the ‘‘classical’’ pre-calculated evaporation coefficients [8,21]:

EðjÞ
1 ¼ �qlv

ðjÞRvðt; x; vðjÞÞjðjÞðvðjÞÞ; EðjÞ
2 ¼ �

Z vðjÞ

vðj�1Þ
qlRvðt; x; vÞjðjÞðvÞdv; ð3:8Þ

where F ðjÞ is the ‘‘classical’’ pre-calculated drag force [8,21]

F ðjÞðt; xÞ ¼
Z vðjÞ

vðj�1Þ
qlvF ðt; x; vÞjðjÞðvÞdv;

and where the source terms associated with the coalescence phenomenon, in the mass and momentum equation

respectively of the jth section read

CðjÞ
m ¼ �mðjÞ

XN
k¼1

mðkÞVjkQjk þ
XIðjÞ
i¼1

mðo}ji Þmðo�jiÞVo}ji o�ji
ðQ}

ji þ Q�
jiÞ; ð3:9Þ
CðjÞ
mu ¼ �mðjÞuðjÞ

XN
k¼1

mðkÞVjkQjk þ
XIðjÞ
i¼1

mðo}ji Þmðo�jiÞVo}ji o�ji
uðo

}
ji ÞQ}

ji

�
þ uðo

�
jiÞQ�

ji

�
; ð3:10Þ

where Vjk ¼ juðjÞ � uðkÞj and where the collision integrals Qjk, Q
}
ji and Q�

ji do not depend on t nor x and read

Qjk ¼
Z Z

Ljk

qlvj
ðjÞðvÞjðkÞðv�Þbðv; v�Þdvdv�; Q}

ji ¼
Z Z

Xji

qlv
}jðo}ji Þðv}Þjðo�jiÞðv�Þbðv}; v�Þdv� dv}; ð3:11Þ
Q�
ji ¼

Z Z
Xji

qlv
�jðo}ji Þðv}Þjðo�jiÞðv�Þbðv}; v�Þdv� dv} ¼

Z Z
X sym
ji

qlv
}jðo�jiÞðv}Þjðo}ji Þðv�Þbðv}; v�Þdv� dv}: ð3:12Þ
D}�
j ¼

[N
k¼2

[k�1

l¼1

Lkl \ D}�
j

� �
[ Llk \ D}�

j

� �
¼
[IðjÞ
i¼1

Xji [ X sym
ji

� �
; Xji ¼ Lo}ji o

�
ji
\ D}�

j : ð3:13Þ

The disappearance integrals Qjk are evaluated on the domains Ljk ¼ ½vðj�1Þ; vðjÞ� � ½vðk�1Þ; vðkÞ�, whereas the
appearance integrals, Q}

ji and Q�
ji, are evaluated on the diagonal strips D}�

j ¼ fðv}; v�Þ; vðj�1Þ
6 v} þ v� 6 vðjÞg=

[N
k¼1Lkk; which are symmetric strips with respect to the axis v} ¼ v� (see D}�

4 in Fig. 1). However, the velocity

being only piecewise constant in these strips D}�
j , they are divided into domains, denoted by Xji and the

symmetric one, X sym
ji , where the velocity of the partners is constant. The domains Xji and X sym

ji are the inter-

section of D}�
j with Lkl; k > l and Lkl; k < l, respectively (3.13); their index is noted i 2 ½1; I ðjÞ� and we define

two pointers which indicate the collision partners for coalescence, at fixed i : o}ji ¼ k and o�ji ¼ l.
The source terms due to coalescence conserve mass and momentum:

XN
j¼1

CðjÞ
m ¼ 0;

XN
j¼1

CðjÞ
mu ¼ 0: ð3:14Þ
Remark 3.4. Let us underline that the Q coefficients only result from the projected coalescence integral

operators involved in (3.1) and (3.2) by writing that the form of n is constant in a section an independent on

t and x as expressed in Eq. (3.5). It is for this reason that they do not depend themselves neither on t nor x.



Fig. 1. Diagram of the integration domains for the evaluation of the pre-calculated collisional integrals.
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Finally, the coefficients used in the model, either for the evaporation process or the drag force EðjÞ
1 , EðjÞ

2

and F
ðjÞ
, j ¼ ½1;N þ 1� in (3.6) and (3.7), or for the coalescence: Qjk, j ¼ ½1;N þ 1�; k ¼ ½1;N þ 1�; k 6¼ j, Q}

ji ,

Q�
ji, j ¼ ½2;N þ 1�; i ¼ ½1; I ðjÞ� in (3.9) and (3.10) can be pre-evaluated from the choice of the droplet size

discretization and from the choice of jðjÞ since the collision integrals do not depend on time nor space. The

algorithms for the evaluation of these coefficients are provided in the following section.

Once the coefficients are evaluated, Eqs. (3.6) and (3.7) can be solved using a finite volume method where

the fluxes are obtained from a kinetic scheme such as the one developed in [32]. For the purpose of vali-

dating the method, we have chosen to focus on a self-similar 2D axisymmetrical configuration in Section 5.

This configuration is presented in Section 5.1. In this context, for the stationary case, a simple Eulerian
solver can be used and it is presented in Section 5.4. In the non-stationary case, the extension of the finite

volume method to the present configuration is detailed in Section 5.4.

Remark 3.5. We did not consider coalescence due to random small velocity differences at the microscopic
level nor coalescence due to turbulent agitation. In this case, the link has to be made with, on the one side,

the velocity distribution inside the section and on the other side, the local dispersion around the averaged

velocity at a given size. In the limit of very small particles like soots, the mean velocity difference with the

gaseous phase is zero and the effective velocity difference is due to thermal motion of the gas molecules. It

can then be shown that, assuming a Maxwellian velocity distribution at a given size, we retrieve the original

formalism of Greenberg et al. [21] but this is beyond the scope of this paper.
4. Precalculation of the various coefficients

For the Eulerian multi-fluid approach, the evaluation of the coalescence source terms can be done from

the values of the constant parameters Qjk, Q
}
ji and Q�

ji. It is the same as for evaporation and drag.

We provide, in this section, a method in order to pre-calculate these constants for a size discretization

with N þ 1 sections ½vði�1Þ; vðjÞ½, with

0 ¼ vð0Þ < vð1Þ < � � � < vðNÞ < vðNþ1Þ ¼ þ1:

In the following, RðjÞ and sðjÞ will, respectively, denote the radius and the surface corresponding to the

volume vðjÞ.



516 F. Laurent et al. / Journal of Computational Physics 194 (2004) 505–543
The distribution function is chosen constant as a function of the radius in sections 1 to N and

exponentially decreasing as a function of the surface in the last section [24]. The function jðjÞ, as a function

of the radius, the surface or the volume (with jðjÞðRÞdR ¼ jðjÞðsÞds ¼ jðjÞðvÞdv) is then given by, for j 2
f1; . . . ;Ng,

jðjÞðRÞ ¼ aj; jðjÞðvÞ ¼ aj

ð4pÞ1=3ð3vÞ2=3
; ð4:1Þ

and for the last section

jðNþ1ÞðsÞ ¼ ke�bðs�sðNÞÞ; jðNþ1ÞðRÞ ¼ k8pRe
�b4p R2�RðNÞ2Þ;

�
ð4:2Þ

where aj and k are such as
R vðjÞ

vðj�1Þ qlvj
ðjÞðvÞdv ¼ 1 for j 2 f1; . . . ;N þ 1g. We then have

aj ¼
3

qlpðRðjÞ4 � Rðj�1Þ4Þ
; k ¼ 6

ffiffiffi
p

p

ql

sðNÞ3=2

b

 
þ 3

ffiffiffiffiffiffiffi
sðNÞ

p

2b2
þ 3

2b5=2
J

!�1

; ð4:3Þ

where

J ¼ ebs
ðNÞ
Z þ1ffiffiffiffiffiffiffi

bsðNÞ
p e�x2 dx: ð4:4Þ

The coefficients Qjk, Q
}
il and Q�

il are integrals of the function gðv; v�ÞjðjÞðvÞjðkÞðv�Þ over different sets, where

gðv; v�Þ ¼ qlvp
3v
4p

� �1=3
"

þ 3v�

4p

� �1=3
#2
:

We will then see how to perform this calculations.

4.1. Precalculation of the coalescence collisional integrals: algorithm

4.1.1. Calculation of the destruction collisional integrals

The Qjk are the integral of gðv; v�ÞjðjÞðvÞjðkÞðv�Þ over ½vðj�1Þ; vðjÞ½�½vðk�1Þ; vðkÞ½. We use the radius variables,

easier for the calculations:

Qjk ¼
Z RðjÞ

Rðj�1Þ

Z RðkÞ

Rðk�1Þ
jðjÞðRÞjðkÞðR�Þg 4

3
pR3;

4

3
pðR�Þ3

� �
dR�

( )
dR: ð4:5Þ

This integral depends on the shape of jðjÞ and jðkÞ. We know that the collision probability between droplets

of the same group is zero because they have the same velocity. We then take Qjj ¼ 0. For the other terms,

the evaluation procedure is different depending if the last section is involved or not.

j and k less than N. In this case, the jðjÞðRÞ and jðkÞðRÞ are the constants aj and ak. The evaluation of the
collisional integral yields after some algebra

Qj;k ¼ ajakql
4

3
p2 RðjÞ6 � Rðj�1Þ6

6
ðRðkÞ

(
� Rðk�1ÞÞ þ RðjÞ5 � Rðj�1Þ5

5
ðRðkÞ2 � Rðk�1Þ2Þ

þ RðjÞ4 � Rðj�1Þ4

4

 !
RðkÞ3 � Rðk�1Þ3

3

 !)
: ð4:6Þ
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k¼N+1 or j¼N+1. In this case, one of the jðjÞ and jðkÞ is exponentially decreasing at infinity. Because the

function g is not symmetric, we have to calculate the two coefficients. As a function of integral J defined by

(4.4), we obtain
Qj;Nþ1 ¼ ajql
4p2k
3b

RðjÞ6 � Rðj�1Þ6

6

(
þ RðjÞ4 � Rðj�1Þ4

4
RðNÞ2
 

þ 1

4pb

!
þ RðjÞ5 � Rðj�1Þ5

5
2RðNÞ
�

þ Jffiffiffiffiffiffi
pb

p
�)

;

ð4:7Þ
QNþ1;k ¼ ak
qlk

3b3
ðRðjÞ
�

� Rðj�1ÞÞ 4p2b2RðNÞ5
"

þ 5

2
pbRðNÞ3 þ 15RðNÞ

16
þ 15J
32

ffiffiffiffiffiffi
pb

p
#

þ ðRðjÞ2 � Rðj�1Þ2Þ 4p2b2RðNÞ4
	

þ 2pbRðNÞ2 þ 1

2




þ RðjÞ3 � Rðj�1Þ3

3
4p2b2RðNÞ3
	

þ 3pb
2

RðNÞ þ 3
ffiffiffiffiffiffi
pb

p

4
J

�

: ð4:8Þ
We only need to numerically evaluate the integral J . It can be made for example with a Simpson method,

the integral
Rþ1
a e�x2 dx being approached by

R aþb
a e�x2 dx with b sufficiently large and then a precision higher

than e�b2 .

4.1.2. Calculation of Q}
ji and Q�

ji

It has to be mentioned that we adopt here the opposite point of view as the one presented in Section

3.2, where we were looking for the set of intersection, for a given section, of the corresponding di-

agonal strip with all the rectangles where the velocity field is constant. In this paragraph, we consider a

given rectangle Ljk with j < k, because of symmetry, and we will find all the diagonal strips intersecting

with it. It will allow us to calculate all the collisional integrals and then to construct the pointers o}ji
and o�ji.

For each rectangle Ljk, we locate the D
}�
i which intersects Ljk, that is D

}�
i for i 2 ½imin; imax þ 1� such that

imin is the minimum of fi 2 N; vðj�1Þ þ vðk�1Þ < vðiÞg and imax is the maximum of fi 2 N; vðiÞ < vðjÞ þ vðkÞg. We

then define Xil ¼ Ljk \ D}�
i where l� 1 is the number of preceding rectangle which intersects D}�

i . We have

also the value for the pointers: o}il ¼ j and o�il ¼ k.
If only one D}�

i intersects Ljk (imin ¼ imax þ 1), then Q}
il ¼ Qjk and Q�

il ¼ Qkj. In the other cases, we ob-

viously have j6N and k6N so that jðjÞ and jðkÞ are given by (4.1). We will also decompose the set in which

we have to make the integral in rectangles and triangles (in the volume phase space).

We then have to calculate the integral of gðv;v�Þ
ð4pÞ2=334=3v2=3ðv�Þ2=3

over three kinds of sets:

• rectangle ½v1; v2� � ½v�1; v�2� (this integral is noted Rðv1; v2; v�1; v�2Þ),
• lower isosceles triangles fðv; v�Þ; v0 6 v6 v0 þ Dv; v�0 6 v� 6 v0 þ v�0 þ Dv� vg (this integral is noted

LT ðv0; v�0;DvÞ),
• upper isosceles triangles fðv; v�Þ; v0 � Dv6 v6 v0; v0 þ v�0 � Dv� v6 v� 6 v�0g (this integral is noted

UT ðv0; v�0;DvÞ),
where we have denoted Qjk ¼ ajakRðvðj�1Þ; vðjÞ; vðk�1Þ; vðkÞÞ, where the function R is given in the previous

subsection by (4.6).
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LT and UT are given by:

LT ðv0; v�0;DvÞ ¼
ql3

1=3

44=3p1=3

3

4
v0ðv�0

�
þ DvÞ4=3 � 3

4
ðv0 þ DvÞðv�0Þ

4=3 � 9

28
ðv�0Þ

7=3 þ 9

28
ðv�0 þ DvÞ7=3

þ 1

2
½ðv0 þ DvÞ2 � v20�ðv�0Þ

1=3 � 3

5
½ðv0 þ DvÞ5=3 � v5=30 �ðv�0Þ

2=3 þ 3

28
ðv0 þ DvÞ7=3

þ 1

4
ðv0 þ DvÞv4=30 þ 1

7
v7=30 þ

Z Dv

0

ðvþ v0Þ2=3ðv�0 þ Dv� vÞ2=3dv
�
; ð4:9Þ
UT ðv0; v�0;DvÞ ¼
ql3

1=3

44=3p1=3

3

4
v0ðv�0

�
� DvÞ4=3 � 3

4
ðv0 � DvÞðv�0Þ

4=3 � 9

28
ðv�0Þ

7=3 þ 9

28
ðv�0 � DvÞ7=3

þ 1

2
½v20 � ðv0 � DvÞ2�ðv�0Þ

1=3 � 3

5
½v5=30 � ðv0 � DvÞ5=3�ðv�0Þ

2=3 þ 3

28
ðv0 � DvÞ7=3

þ 1

4
ðv0 � DvÞv4=30 þ 1

7
v7=30 �

Z Dv

0

ðvþ v0 � DvÞ2=3ðv�0 � vÞ2=3dv
�
: ð4:10Þ

Only a simple integral have to be numerically calculated for each calculation of LT or UT .
We can then evaluate I ijk, the integral of gðv; v�ÞjðjÞðvÞjðkÞðv�Þ over ½vðj�1Þ; vðjÞÞ � ½vðk�1Þ; vðkÞ½\fðv; v�Þ;

vþ v� 6 vðiÞg. We will then have Q}
il ¼ I ijk � I i�1

jk , if I0jk ¼ 0. In the same way, we can define I ikj and we will

have: Q�
il ¼ I ikj � I i�1

kj .

We can remark that I imaxþ1
jk ¼ Qjk. In order to calculate the I ijk for i 2 ½imin; imax�, we distinguish areas

bordered by the lines vþ v� ¼ a, vþ v� ¼ b and the boundaries of the rectangle, where a ¼ vðj�1Þ þ vðkÞ and
b ¼ vðjÞ þ vðk�1Þ (see Fig. 2). Four cases have to be considered, according to the position of the line vþ v� ¼
vðiÞ with respect to the areas 1, 2, 2� or 3:
• if vðiÞ 6 a and vðiÞ 6 b (area 1) then I ijk ¼ ajakLT ðvðj�1Þ; vðk�1Þ; vðiÞ � vðj�1Þ � vðk�1ÞÞ,
• if a < vðiÞ < b (area 2, example in Fig. 2) then I ijk ¼ ajakfRðvðj�1Þ; vðiÞ � vðkÞ; vðk�1Þ; vðkÞÞ þ LT ðvðiÞ � vðkÞ;

vðk�1Þ; vðkÞ � vðk�1ÞÞg,
• if b < vðiÞ < a (area 2�, example in Fig. 2) then I ijk ¼ ajakfRðvðj�1Þ; vðjÞ; vðk�1Þ; vðiÞ � vðjÞÞ þ LT ðvðj�1Þ;

vðiÞ � vðjÞ; vðjÞ � vðj�1ÞÞg,
Fig. 2. Various intersection possibilities of diagonal strips and rectangles.
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• if vðiÞ P a and vðiÞ P b (area 3) then I ijk ¼ Qj;k � ajakUT ðvðjÞ; vðkÞ; vðjÞ þ vðkÞ � vðiÞÞ,
I ikj is given by the same formulae by changing j and k, in the four cases.

So far, we have obtained the values of Qjk, Q
}
il and Q�

il and of the pointers o}il ¼ j and o�il ¼ k.

4.2. Precalculation of the evaporation coefficients and mean drag

4.2.1. Calculation of the evaporation coefficients

In the context of the chosen configuration defined by equation (5.1), we get the following expressions for

the evaporation coefficients EðjÞ
1 and EðjÞ

2 , j6N :

EðjÞ
1 ¼ �qlv

ðj�1ÞjðjÞðt; x; vðj�1ÞÞRvðt; x; vðj�1ÞÞ ¼ � 1

p
Rðj�1Þ

RðjÞ4 � Rðj�1Þ4
Rvðt; x; vðj�1ÞÞ; ð4:11Þ
EðjÞ
2 ¼ �ql

Z vðjÞ

vðj�1Þ
jðjÞðt; x; vÞ Rvðt; x; vÞ dv ¼ � 3

p
RðjÞ � Rðj�1Þ

RðjÞ4 � Rðj�1Þ4
Rvðt; x; vðjÞmoyÞ; ð4:12Þ

where the mean evaporation volume is given by:

vðjÞmoy ¼
4

3
pRðjÞ3

moy ; RðjÞ
moy ¼

RðjÞ þ Rðj�1Þ

2
; ð4:13Þ

since Rv is proportional to the radius with the use of the d2 law. For the last section, where

jðNþ1ÞðsÞ ¼ ke�bðs�sðNÞÞ, we obtain:

EðNþ1Þ
1 ¼ � 4

ffiffiffi
p

p
sðNÞ

sðNÞ3=2

b þ 3

ffiffiffiffiffiffi
sðNÞ

p
2b2

þ 3
2

J
b5=2

Rvðt; x; vðNÞÞ; ð4:14Þ
EðNþ1Þ
2 ¼ � 6

ffiffiffi
p

p

sðNÞ3=2 þ 3

ffiffiffiffiffiffi
sðNÞ

p
2b þ 3

2
J

b3=2

Rvðt; x; vðNþ1Þ
moy Þ; ð4:15Þ

where J has been defined by Eq. (4.4) and where the mean evaporation volume reads:

vðNþ1Þ
moy ¼ 4

3
p RðNþ1Þ3

moy ; RðNþ1Þ
moy ¼ RðNÞ þ J

2
ffiffiffiffiffiffi
pb

p : ð4:16Þ
4.2.2. Calculation of the mean drag

The expression of the mean drag force in the jth section is given by:

F ðjÞ ¼
Z vðjÞ

vðj�1Þ
qlvF ðt; x; vÞjðjÞðvÞdv ¼ F ðt; x; vðjÞu Þ; ð4:17Þ

where the mean drag volume vðjÞu , j6N , reads:

vðjÞu ¼ 4

3
pRðjÞ3

u ; RðjÞ
u ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RðjÞð Þ2 þ Rðj�1Þð Þ2

2

s
; ð4:18Þ

since the Stokes drag coefficient is proportional to the inverse of the radius to the square. For the last

section, we obtain:
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vðNþ1Þ
u ¼ 4

3
pRðNþ1Þ3

u ; RðNþ1Þ2
u ¼

RðNÞ3 þ 3RðNÞ

8pb þ 3J
16p3=2b3=2

RðNÞ þ J

2
ffiffiffiffi
pb

p : ð4:19Þ

The Eulerian multi-fluid conservation equations governing the spray can then be resolved.
5. Validation through a reference Lagrangian solver: the nozzle test-case

This section is devoted to a representative test-case in both stationary and unstationary configurations: a

decelerating self-similar 2D axisymmetrical nozzle. The details of the test-case and of the characteristics

parameters of the three injected sprays with various size distributions are provided in the first subsection.
The solvers for both the Lagrangian reference solution and the Eulerian multi-fluid method are then

presented as well as the information of the various parameters involved with both methods. The Eulerian

multi-fluid model is then validated in comparison with the Lagrangian solver and the influence of the level

of refinement in the size discretization is studied. Finally the validity of the assumption on velocity dis-

persion underlying the Eulerian model and the computational efficiency of this approach, in comparison to

the Lagrangian approach, is investigated.

5.1. Definition of configuration

We conduct numerical simulations with both Lagrangian and Eulerian solvers on the test-case config-

uration of a conical diverging nozzle. This configuration is originally unstationary 2D axisymmetrical in

space and 1D in droplet size and can be considered as representative of the difficulty one is going to en-

counter in realistic problems since it involves a 3D unstationary calculation. However, we are not going to

precisely evaluate all the properties of the spray as in [1,8] and [24].

The purpose of the comparison is to prove on the one side the ability of the Eulerian multi-fluid model to

correctly describe the coalescence phenomenon and on the other side to provide a comparison tool for the
numerical simulations based on Lagrangian models and solvers in terms of precision and CPU cost.

Consequently, we only consider simple droplet models as already mentioned in Section 2.1.

A spray of pure heptane fuel is carried by a gaseous mixture of heptane and nitrogen into a conical

diverging nozzle. At the entrance, 99% of the mass of the fuel is in the liquid phase, whereas 1% is in the

gaseous mixture. The mass fraction in the gas are then respectively of 2.9% for heptane and 97.1% for the

nitrogen. The temperature of the gas mixture is supposed to be fixed during the whole calculation at 400 K.

The influence of the evaporation process on the gas characteristics is not taken into account in our one-way

coupled calculation. It is clear that the evaporation process is going to change the composition of the
gaseous phase and then of the evaporation itself. However, we do not want to achieve a fully coupled

calculation, but only to compare two ways of evaluating the coupling of the dynamics, evaporation and

coalescence of the droplets. It has to be emphasized that it is not restrictive in the framework of this study

which is focused on the introduction, validation and cost evaluation of a new Eulerian solver for the liquid

phase.

In order to only solve for stationary and unstationary problems as a 1D problem in space and 1D

problem in droplet size, we make a similarity assumption on the gas and droplets variables. Actually, we

choose a stationary gas flow in the conical nozzle such that the axial velocity does not depend on the radial
coordinate r and such that the radial velocity is linear as a function of the radial coordinate, whereas the

linearity coefficient does not depend on r:

v ¼ V ðzÞ; v ¼ rUðzÞ: ð5:1Þ
z r
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In this stationary configuration of an incompressible flow, we can determine the velocity field given by

ðV ðzÞ;UðzÞÞ such that the stream lines are straight:

V ðzÞ ¼ z20V ðz0Þ
z2

; UðzÞ ¼ V ðzÞ
z

¼ z20V ðz0Þ
z3

; ð5:2Þ

where z0 > 0 is fixed as well as V ðz0Þ. The trajectories of the fluid particles are then given by

rðtÞ ¼ rð0Þ 1

�
þ 3V ðz0Þ

z0
t
�1=3

; zðtÞ ¼ zð0Þ 1

�
þ 3V ðz0Þ

z0
t
�1=3

:

As for the droplets, we also assume similarity; their trajectories are straight if their injection velocity is co-

linear to the one of the gas (see Fig. 3). The similarity assumption is only valid when no coalescence is to be

found. However, even in the presence of coalescence, it is verified in a neighborhood of the central line.
Let us finally consider three droplet distribution functions. The first one, called monomodal, is com-

posed of droplets with radii between 0 and 35 lm, with a Sauter mean radius of 15.6 lm and a variance of

D10 ¼ 24 lm. It is represented in Fig. 4 and is typical of the experimental condition reported in [24]. The

droplets are only constituted of liquid heptane, their initial velocity is the one of the gas, their initial

temperature, fixed at the equilibrium temperature 325.4 K (corresponding to an infinite conductivity

model), does not change along the trajectories. The second one is constant as a function of radius on the

interval [15 lm, 30 lm] and zero elsewhere. It is then discontinuous and represent a first step into the

treatment of non-smooth distributions. It will be the one we will use for the unsteady calculations. The third
distribution is called bimodal since it involves only two groups of radii, respectively, 10 lm and 30 lm with

equivalent mass density. This bimodal distribution function is typical of alumina particles in solid prop-

ergol rocket boosters [2]. It is represented in Fig. 4 and is probably the most difficult test case for a Eulerian

description of the size phase space.

The initial injected mass density is then taken at m0 ¼ 3.609 mg/cm3 so that the volume fraction occupied

by the liquid phase is 0.57% in the stationary case and fluctuates around this value in the unstationary one.

Because of the deceleration of the gas flow in the conical nozzle, droplets are going to also decelerate,

however at a different rate depending on their size and inertia. This will induce coalescence. The deceler-
ation at the entrance of the nozzle is taken at aðz0Þ ¼ �2ðV ðz0Þ=z0Þ; it is chosen large enough so that the

velocity difference developed by the various sizes of droplets is important. In the stationary configuration,

we have chosen a very large values as well as a strong deceleration leading to extreme cases: V ðz0Þ ¼ 5 m/s,
O z0

v(z0)

r

z

Fig. 3. Sketch of the conical diverging nozzle.
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distribution function, (right) bimodal distribution function discretized with 50 sections.
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z0 ¼ 10 cm for the monomodal case and V ðz0Þ ¼ 5 m/s, z0 ¼ 5 cm for the bimodal case. It generates a very
strong coupling of coalescence and dynamics and induces an important effect on the evaporation process; it

is a good test-case for the Eulerian model. We have chosen a case a little less drastic in the unsteady

configuration: z0 ¼ 20 cm and V ðz0Þ ¼ 4 m/s. In this case, the mass density of the droplets who are injected

at the entrance of the nozzle z ¼ z0 varies with time: the total mass density m at this point is given by

mðt; z0Þ ¼ ½1þ 0:9 sinðxtÞ�m0;

where x¼ 390 s�1 and the oscillations occurs around the total mass density for the stationary case m0. Be-

cause of these oscillations, the coalescence phenomenon is affected, and this effect, coupled to the dynamics of

the droplets, results in strong oscillations in the Sauter mean diameter and mean velocity of the spray. It will
prove to be a difficult test-case, even for the Lagrangian solver, and all the more for the Eulerian one.

Before coming to the result sub-section and before comparing the methods for various distributions, let

us present the two solvers.

5.2. A reference Lagrangian solver

Euler–Lagrange numerical methods are commonly used for the calculation of polydisperse sprays in

various application fields (see for example [10,14,30,36] and the references therein). In this kind of ap-
proach, the gas phase is generally computed with a finite volume Eulerian solver, while the dispersed phase

is treated with a random particle method. The influence of the droplets on the gas flow is taken into account

by the presence of source terms in the r.h.s. of the Navier–Stokes (or Euler) equations.

A complete exposition on the derivation and the implementation of such a method is out the scope of this

paper. We refer, for example, to [11,30] or [2] for more details. Here, for the sake of completeness, we present

the main features of the numerical method that we used in order to provide a ‘‘reference numerical solution’’.

A particle method can be interpreted as a direct discretization of the kinetic Eq. (2.1). At each time step,

the droplet distribution function f ðtkÞ is approximated by a finite weighted sum of Dirac masses, ~f ðtkÞ,
which reads

f ðtkÞ ¼
XNk

i¼1

nki dzki ;uki ;vki : ð5:3Þ

Each weighted Dirac mass is generally called a ‘‘parcel’’ and can be physically interpreted as an ag-

gregated number of droplets (the weight nki ), located around the same point, xki , with about the same ve-
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locity, uki and about the same volume, vki . N
k denotes the total number of parcels in the computational

domain, at time tk. In all our calculations, the weights nki were chosen in such a way that each parcel

represents the same volume of liquid (nki v
k
i ¼ Const:).

Each time step of the particle method is divided in two stages. The first one is devoted to the discreti-

zation of the l.h.s. of the kinetic Eq. (2.1), modeling the motion and evaporation of the droplets. In our

code, the new position, velocity and volume of each parcel are calculated according to the following nu-

merical scheme:

ukþ1
i ¼ uki expð�Dt=ski Þ þ V ðzki Þð1� expð�Dt=ski ÞÞ;

vkþ1
i ¼ 4p

3
max 0;

3vki
4p

� �2=3
� EDt

	 
� �3=2

;

zkþ1
i ¼ zki þ DtV ðzki Þ þ ðuki � V ðzki Þ expð�Dt=ski ÞÞ;

8>><
>>: ð5:4Þ

where V denotes the axial gas velocity, E is the constant of the evaporation model (E ¼ 1:583 10�8 m2/s), zki
– respectively uki – corresponds to the axial coordinate of the position – respectively of the velocity – of the

parcel i at time and ski is the parcel relaxation time defined as

ski ¼
2qlðrki Þ

2

9lg
;

with rki being the parcel radius, ql the liquid density and lg the gas viscosity.

In system (5.4), the parcel radial coordinate is not calculated, in order to keep the same hypothesis as for

the 1D multi-fluid Eulerian model. Besides, as mentioned above, the influence of the droplets on the gas

flow is not taken into account. Hence, Eq. (5.2) is used to calculate the gas velocity, V ðzki Þ at the parcel

location.

The second stage of a time step is devoted to the discretization of the collision operator. A lot of Monte-
Carlo algorithms have been proposed in the literature for the treatment of droplet collisions

([2,10,14,30,37]). They are all inspired by the methods used in molecular gas dynamics [38] and, in par-

ticular, they suppose that the computational domain is divided into cells, or control volumes, which are

small enough to consider that the droplet distribution function is almost uniform over them.

The algorithm used in our reference Lagrangian solver is close to the one proposed by O�Rourke. It

consists of the following three steps (see also [30] for more details).

1. For each computational cell CJ , containing NJ parcels, we choose randomly, with a uniform distribution

law, NJ=2 pairs of parcels (ðNJ � 1Þ=2, if NJ is odd).
2. For each pair p, let p1 and p2 denote the two corresponding parcels with the convention n1 P n2, where n1

and n2 denote the parcel numerical weights. Then for each pair p of the cell CJ , we choose randomly an

integer mp, according to the Poisson distribution law

P ðmÞ ¼ k12
m!

expð�k12Þ;

with

k12 ¼ p
n1ðNJ � 1ÞDt

volðCJ Þ
ðR1 þ R2Þ2ju1 � u2j

with VolðCJ Þ being the volume of the cell CJ (proportional to ðzJ=z0Þ2 for the nozzle test case problem)

and R1, R2 being the radii of the parcels p1, p2. The coefficient k12 represents the mean number of col-

lision, during ðNj � 1Þ time steps, between a given droplet of the parcel p2 and any droplet of the parcel

p1. Note that a given pair of parcels is chosen, in average, every ðNj � 1Þ time steps.
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3. If mp ¼ 0, no collision occurs during this time step between the parcels p1 and p2. Otherwise, if mp > 0, the

parcel p1 undergoes mp coalescences with the parcel p2 and the outcome of the collision is treated as fol-

lows. First the weight n1 of the parcel p1 is replaced by n01 ¼ n1 � n2 and its other characteristics are left

unchanged. If n01 6 0, the parcel p1 is removed from the calculation. Secondly, the velocity u2 and the vol-
ume v2 of the parcel p2 are replaced by

v02 ¼ v2 þ mpv1; u02 ¼
v2u2 þ mpv1u1
v2 þ mpv1

;

and its weight, n2, is left unchanged.
Let us mention that, for each time step and each control volume CJ , the computational cost of this

algorithm behaves like OðNJ Þ. This is a great advantage compare to O�Rourke method, which behaves like

OðN 2
J Þ. Another algorithm, with the same features, has been recently introduced by Schmidt and Rudtland

in [37].

To obtain a good accuracy, the time step, Dt, must be chosen small enough to ensure that the number of
collisions between two given parcels, p1 and p2, is such that for almost every time: mpn2 6 n1. The average

value of mp being k12, this constraint is equivalent to the condition

n2NJDt
volðCJ Þ

pðR1 þ R2Þ2ju1 � u2j � 1: ð5:5Þ

For the nozzle test case described above, this constraint reveals to be less restrictive than the ‘‘CFL’’ like

condition

8i ¼ 1; . . . ;N ;
juijDt
Dz

� 1; ð5:6Þ

with Dz being the mesh size. This condition is necessary to compute accurately the droplet movement and in
particular to avoid that a parcel goes through several control volumes during the same time step. This is

essential to have a good representation of the droplet distribution function in each mesh cell.

5.3. Characteristic computation parameters, reference solutions

Out of the calculations performed in the stationary and unstationary configurations, we have selected

two stationary, with the monomodal and bimodal distributions, and one unstationary configuration with

the second size distribution which is constant in some size interval and thus possesses two discontinuities.
This choice will be shown to be the right one in order to illustrate the main points we want to make in the

present paper. The numerical parameters used in order to compute the reference solutions with the La-

grangian approach are summarized in Table 1.

In the stationary configuration, in order to eliminate the numerical noise intrinsic to the Lagrangian

approach, time averages (over a period of 0.6 s) have been used to calculate the mass density, the Sauter
Table 1

Parameters for the reference solution

No. of parcels No. of parcels inj./s Dz (m) Dt (s)

Mon. Stat. 14,000 – 2:5� 10�3 1:25� 10�5

Bim. Stat. 63,000 – 1:8� 10�3 0:9� 10�5

Lag. Unst. 1 245,000 5,000,000 3:0� 10�3 1:0� 10�5

Lag. Unst. 2 49,500 1,000,000 3:0� 10�3 1:0� 10�5

Lag. Unst. 3 5000 100,000 3:0� 10�3 1:2� 10�5
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mean radius and the mean velocity of the droplets in each computational cell, once the steady state has been

reached since the calculations are done with an unsteady really 2D axisymmetrical code. The number of

particles present in the domain has been checked to be high enough in order to get a converged solution.
Let us now analyze the main features of the obtained stationary solutions for both initial droplet size

distribution. It can be easily seen, in Figs. 5 and 6, that the influence of the coalescence phenomenon is

important in both the monomodal and bimodal configurations. Since the droplets of various sizes develop a

velocity difference reaching 1 m/s due to the deceleration in the monomodal case, coalescence takes place

and changes the profile of the size distribution function and consequently influences the evaporation

process by transferring some mass from the small droplets into the big ones. It can also be seen in Fig. 5

that the influence on the Sauter mean diameter can reach five to seven microns in the monomodal case. This

demonstrates that the coalescence phenomenon really plays a crucial role in this configuration and is
0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

10 12 14 16 18 20 22 24 26 28 30

m
as

s 
de

ns
ity

 (
g/

cm
^3

)

z (cm)

0

5

10

15

20

25

30

10 12 14 16 18 20 22 24 26 28 30

Sa
ut

er
 r

ad
iu

s 
(m

ic
ro

m
)

z (cm)

Fig. 5. (left) Evolution of the mass density of liquid for the Lagrangian reference solution with (dashed line) and without (solid line)

coalescence for the monomodal case, (right) evolution of the Sauter mean radius of the spray size distribution with (dashed line) and

without (solid line) coalescence for the monomodal case.
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strongly coupled to the dynamics and evaporation of the spray, thus offering a good test-case in order to

validate the multi-fluid Eulerian model.

For most stationary configurations, it is clear that the Lagrangian approach is going to be much more
efficient and precise that any Eulerian one. These configurations are only chosen in order to validate the

Eulerian model and numerical method introduced in this paper; we will not compare the CPU times, all the

more since the codes used in order to get these stationary solutions have a completely different structure.

For the unstationary case, stationary calculation are first performed between the times 0 (where nothing

is to be found in the computational domain) and 0.3222 s in order to reach the stationary case. Then, mass

density oscillations are introduced. The instantaneous values are given for a time t¼ 0.41 s, in the middle of

the sixth period after the beginning of the oscillations. In fact, it is a temporal averaging on a short time

interval of 0.5 ms around this value. We are also interested in the temporal averages since the configuration
is statistically stationary. This averaging begins after the transition period, when the periodic regime is

reached in all the computational domain, that is 10 periods after the beginning of the oscillations at the

injection point. Moreover the averaging is done on an interval of 10 oscillations for the Lagrangian method

in order to have good statistics with a reasonable number of droplets.

The question of the CPU time becomes more important in this unsteady case. Therefore, we present, in

Figs. 7–9, the results obtained with three levels of precision (see Table 1) for the Lagrangian solver and

compare the reduced CPU time to the one obtained with the lowest number of particles in the case without

coalescence. We obtain: 1.6, for the case Lag. Unst. 3, 23, for the case Lag. Unst. 2, and 123, for the case
Lag. Unst. 1. It becomes clear that the case with the lowest number of particles is going to generate artificial

fluctuations associated with the Lagrangian description; in the particular applications related to combus-

tion problems, the presence of too few droplets, the vaporization of which is going to create strong spatial

and temporal fluctuations in the fuel gaseous mass fraction is going to be as crucial issue. Thus, even if the

global qualitative behavior of the spray is reproduced in simulation Lag. Unst. 1 and the reduced CPU time

is small, the acceptable level of convergence is not reached. A first acceptable level of convergence is reached

for the simulation Lag. Unst. 2. The solution considered as converged and which will be taken as the

‘‘reference solution’’ in the following for this unsteady case is Lag. Unst. 3. It is interesting to note that,
even if the problem is essentially monodimensional in the space variable, the unsteady character of the
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Fig. 7. (left) Evolution of the temporal averaging of the liquid mass density for the Lagrangian reference solution with (solid line) and

without (dashed line) coalescence, for the unstationary case, (right) evolution of the mass density of the liquid at t¼ 0.41 s for the three

Lagrangian solutions with coalescence (solid line: Lag. Unst. 1, i.e. reference solution; dashed line: Lag. Unst. 2; dotted line: Lag. Unst.

3) and for the Lagrangian reference solution without coalescence (small dotted line).
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Fig. 9. (left) Evolution of the temporal averaging of the Sauter mean radius of the liquid phase for the Lagrangian reference solution

with (solid line) and without (dashed line) coalescence, for the unstationary case, (right) evolution of the Sauter mean radius of the

liquid at t¼ 0.41 s for the three Lagrangian solutions with coalescence (solid line: Lag. Unst. 1, i.e. reference solution; dashed line: Lag.

Unst. 2; dotted line: Lag. Unst. 3) and for the Lagrangian reference solution without coalescence (small dotted line).
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configuration requires a substantial amount of droplets for the solution to be converged, which suggest

what is should be for a 2D or 3D problem.

The results are presented, in Figs. 7–9, through the mass density, the Sauter mean radius and the velocity

relative to the gaseous phase, each variable being represented by its time average in this statistically sta-

tionary configuration on the left, and by an instantaneous value taken at t ¼ 0:41 s on the right. The profiles

corresponding to the case without coalescence are also plotted. The chosen configuration is particularly

interesting since the large mass oscillations of the injected spray result in a strong coupling with the dy-
namics and coalescence phenomena and leads to a completely different behavior as far as the dynamics and

the size distributions are concerned.

Finally, the complexity of the chosen configurations, as well as the strong couplings they generate,

justifies the fact that we have chosen to conduct the comparison on such test-cases.
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5.4. Eulerian solvers

Two different solvers are used depending on the stationary character or not of the configuration. Let us
begin with the solver for the stationary configuration. The Eulerian multi-fluid model (3.6) and (3.7) can be

rewritten and simplified in the self-similar 2D axisymmetrical configuration we are considering. The re-

sulting set of equations can be found in [1]. Since the one-way coupled equations are resolved and since the

structure of the gaseous velocity field is prescribed and stationary, we only have to solve the 1D ordinary

differential system of equations in the z variable for each section. The problem is then reduced to the in-

tegration of a stiff initial value problem from the inlet where the droplets are injected until the point where

99.9% of the mass has evaporated. The integration is performed using LSODE for stiff ordinary differential

equations from the ODEPACK library [39]. It is based on backward differentiation formulae (BDF)
methods [40] where the space step is evaluated at each iteration, given relative and absolute error tolerances

[39]. The relative tolerance, for the solutions presented in the following are taken to be 10�4 and the ab-

solute tolerance are related to the initial amount of mass in the various sections, since it can vary of several

orders of magnitude. Repeated calculation with smaller tolerances have proved to provide the same

solutions.

In order to discretize the dynamical part of the multi-fluid system (3.6) and (3.7), that is, the left hand

side of the system of conservation equations for unstationary configurations, we consider a second-order

finite volume kinetic scheme introduced by Bouchut et al. [32]. Indeed, without the source term, the mass
density of each section and its velocity are solution of pressureless gas dynamics equations [26,27]. Let us

note q this mass density, and ðvr; vh; vzÞ this velocity in cylindrical coordinates ðr; h; zÞ, without any reference
to the number of the section. In the axisymetrical configuration, vh is zero and under the similarity as-

sumption, the density q, the axial velocity v ¼ vz and the reduced radial velocity u ¼ ur=r, only depend on

the axial coordinate z and are solution of the system:

otqþ 2quþ ozðqvÞ ¼ 0;
otp þ 3puþ ozðpvÞ ¼ 0;
otqþ 2quþ ozðqvÞ ¼ 0;

8<
: ð5:7Þ

where p ¼ qu and q ¼ qv and where the middle terms in the left hand side of the equations come from the

divergence operator in cylindrical coordinates.

Let us proceed such as in [32] in order to obtain a finite volume method with a kinetic scheme for this

particular system. For the pressureless system, the Maxwellian distribution making the link between the

kinetic level and the equation on the macroscopic moments can be taken as a Dirac d function [26]. Starting

at time tn with the functions qnðzÞ, unðzÞ and vnðzÞ, the functions at time tnþ1 ¼ tn þ Dt can be obtained by

solving the transport equation derived from the similarity assumption:

otf � f2off þ nozf ¼ 0;
f ðz; f; n; tnÞ ¼ f nðz; f; nÞ ¼ MðqnðzÞ; unðzÞ; vnðzÞ; f; nÞ;

�
ð5:8Þ

where the Maxwellian M is defined for any q > 0, ðu; v; f; nÞ 2 R4 by

Mðq; u; v; f; nÞ ¼ qd ðu; vÞð � ðf; nÞÞ;

and by projecting the obtained distributions in order to get their new moments. The transport equation has
the exact solution, for 0 < t < Dt:

f ðz; f; n; tn þ tÞ ¼ f n z
�

� nt;
f

; n

�
: ð5:9Þ
1� tf
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The new moments are then obtained by projecting the exact solution

qnþ1ðzÞ ¼
R
R2 f ðz; f; n; tnþ1Þdfdn;

pnþ1ðzÞ ¼
R
R2 ff ðz; f; n; tnþ1Þdfdn;

qnþ1ðzÞ ¼
R
R2 nf ðz; f; n; tnþ1Þdfdn:

8<
: ð5:10Þ

In order to obtain discrete values over a mesh of constant size Dz, new averages qnþ1
j , pnþ1

j , qnþ1
j , are defined

by the usual expression

wn
j ¼

1

Dz

Z zjþ1=2

zj�1=2

wðz; tnÞdz:

The obtained scheme can then be written as

qnþ1
j ¼ qn

j � 2DtGð1Þ
j � Dt

Dz ðF
ð1Þ
jþ1=2 � F ð1Þ

j�1=2Þ;
pnþ1
j ¼ pnj � 3DtGð2Þ

j � Dt
Dz ðF

ð2Þ
jþ1=2 � F ð2Þ

j�1=2Þ;
qnþ1
j ¼ qnj � 2DtGð3Þ

j � Dt
Dz ðF

ð3Þ
jþ1=2 � F ð3Þ

j�1=2Þ;

8><
>: ð5:11Þ

where the flux terms are given by

Fjþ1=2 ¼
1

Dt

Z tnþ1

tn

Z
R2

1
f
n

0
@

1
Anf ðzjþ1=2; f; n; tÞdfdndt; ð5:12Þ
Gj ¼
1

DtDz

Z tnþ1

tn

Z zjþ1=2

zj�1=2

Z
R2

1

f
n

0
@

1
Aff ðzjþ1=2; f; n; tÞdfdndzdt: ð5:13Þ

The obtained fluxes rely, through (5.8), on the knowledge of functions qnðzÞ, unðzÞ and vnðzÞ, which have

to be determined from the discrete values qn
j , p

n
j and qnj . We use piecewise constant over half-cells, as for the

simplified second-order kinetic scheme defined in [32]. If we do not write, on purpose for the sake of

legibility, the n exponent, the moments take the form

qðzÞ ¼ qR
j�1=2; uðzÞ ¼ uRj�1=2; vðzÞ ¼ vRj�1=2; zj�1=2 < z < zj;

qðzÞ ¼ qL
jþ1=2; uðzÞ ¼ uLjþ1=2; vðzÞ ¼ vLjþ1=2; zj < z < zjþ1=2;

�
ð5:14Þ

with

qL
jþ1=2 ¼ qj þ DqjDz=2; qR

jþ1=2 ¼ qjþ1 � Dqjþ1Dz=2;
uLjþ1=2 ¼ �uj þ DujDz=2; uRjþ1=2 ¼ �ujþ1 � Dujþ1Dz=2;
vLjþ1=2 ¼ �vj þ DvjDz=2; vRjþ1=2 ¼ �vjþ1 � Dvjþ1Dz=2:

8><
>: ð5:15Þ

In order to satisfy the momentum conservation, �uj and �vj are chosen as

�uj ¼ uj �
DqjDuj
4qj

Dz2; �vj ¼ vj �
DqjDvj
4qj

Dz2;

with uj ¼ pj=qj and vj ¼ qj=qj.

The CFL conditions is defined for this explicit scheme as

Dt sup
z

junðzÞj6Dz=2; Dt sup
z

jvnðzÞj6Dz=2;
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and the obtained scheme reads

Fjþ1=2 ¼
qL
jþ1=2v

L
jþ1=2

1þ uLjþ1=2Dt

1

uLjþ1=2

1þ uLjþ1=2Dt=2

1þ uLjþ1=2Dt
vLjþ1=2

0
BB@

1
CCA; ð5:16Þ

and

Gj ¼
DtqL

j�1=2v
L
j�1=2u

L
j�1=2

2Dzð1þ uLj�1=2DtÞ
2

1

uLj�1=2

1þ uLj�1=2Dt=3

1þ uLj�1=2Dt
vLj�1=2

0
BB@

1
CCA

þ
qR
j�1=2u

R
j�1=2

2ð1þ uRj�1=2DtÞ
2

1þ uRj�1=2

Dt
2

uRj�1=2

1þ uRj�1=2Dt þ ðuRj�1=2Þ
2Dt2=3

1þ uRj�1=2Dt

vRj�1=2 1þ uRj�1=2

Dt
2

� �

0
BBBBBBB@

1
CCCCCCCA

þ
qL
jþ1=2u

L
jþ1=2

2ð1þ uLjþ1=2DtÞ
2

1� Dt
Dz

vLjþ1=2 þ uLjþ1=2

Dt
2

uLjþ1=2

1þ uLjþ1=2Dt þ ðuLjþ1=2Þ
2Dt2=3� Dt

Dz
vLjþ1=2ð1þ uLjþ1=2Dt=3Þ

1þ uLjþ1=2Dt

vLjþ1=2 1� Dt
Dz

vLjþ1=2 þ uLjþ1=2

Dt
2

� �

0
BBBBBBBB@

1
CCCCCCCCA
: ð5:17Þ

The vaporization, coalescence and drag forces source terms are then added in order to perform the

simulations.

The reduced CPU times for both the monomodal and bimodal distributions are presented in Table 2 in

the stationary configuration and in Table 3, for the unstationary one. It is worth noticing that the com-

plexity behaves like the number of sections to the square, but more importantly, that the resolution of the

coalescence phenomenon only brings in an additional cost of about 50% compared to the computation
without the coalescence quadratic terms.

5.5. The stationary case

The Eulerian multi-fluid model is especially well-suited for the monomodal distribution where a large

and continuous spectrum of droplets is present, with a distribution tail. It can be seen in Fig. 10-left, that
Table 2

Reduced CPU time for the stationary configuration

No. sections Mon. without

collision

Mon. with

collision

No. sections Bim. without

collision

Bim. with

collision

90 22.7 35.2 100 70.9 114.1

60 10.9 25.6 50 16.0 24.0

30 3.0 4.2 25 9.0 13.0

15 1.0 1.8 13 1.0 1.3



Table 3

Reduced CPU time for the unstationary configuration and second size distribution

No. sections Unstationary without collision Unstationary with collision

90 22.0 35.0

30 3.1 4.7

15 1.0 1.4
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Fig. 10. (left) Evolution of the mass density of liquid for the Lagrangian reference solution (solid line) and for various discretizations

with the Eulerian multi-fluid model (+: 90 sections, �: 30 section, *: 15 sections, �: 90 sections without collision). (right) Sauter mean

radius for the Lagrangian reference solution (solid line) and for various discretizations with the Eulerian multi-fluid model (+: 90

sections, �: 30 section, *: 15 sections, �: 90 sections without collision).
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the curves corresponding to the 90 sections solutions and the reference Lagrangian solution almost coin-

cide; the difference never gets bigger that five per a thousand of the initial mass density of droplets. This, on

the one side, demonstrates the ability of the Eulerian model to simulate the proposed configuration, and on

the other hand provides a numerical validation tool for the Lagrangian solver.

As mentioned previously, the strength of such multi-fluid models, is to be able to reproduce the global

behavior of the spray with a limited number of sections. Consequently, calculations with various numbers

of sections were performed: 90, 60, 30 and 15. For completeness, we have also represented, both in Fig. 10
left and right, the solution without coalescence calculated with 90 sections (which is superimposed on the

one calculated with the reference Lagrangian solver in Fig. 10-left). The conclusion to be drawn from these

figures is that the multi-fluid is able to predict fairly well, even in the case of 15 sections for which the

computational cost is very reasonable, the global coupling of the various phenomena occurring in the

nozzle. One crucial point is related to the localization of the evaporation front for pollutant formation

purposes and even with 15 sections, the evaporation front is precisely computed.

It is particularly interesting to note that the average dynamics are correctly reproduced with 90 sections.

Concerning the Sauter mean radius of the distribution, it is extremely well-predicted by the 90 section
solution, fairly well-reproduced by the 30 section one and the difference gets bigger when we use 15 sections,

even if the mass difference does not get bigger than 2% of the initial one.

If the monomodal distribution is well suited for the Eulerian multi-fluid approach, the bimodal one

can be considered as the most difficult task; first the method can be shown to be of first-order in the

size discretization step [28] and some previous calculations have proved the difficulty of calculating the



0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

6 8 10 12 14 16 18 20

m
as

s 
de

ns
ity

 (
g/

cm
^3

)

z (cm)

0

5

10

15

20

25

30

35

6 8 10 12 14 16 18 20

Sa
ut

er
 r

ad
iu

s 
(m

ic
ro

m
)

z (cm)

Fig. 11. (left) Evolution of the mass density of liquid for the Lagrangian reference solution (solid line) and for various discretizations

with the Eulerian multi-fluid model (+: 100 sections,�: 50 section, *: 25 sections,�: 100 sections without collision). (right) Sauter mean

radius for the Lagrangian reference solution (solid line) and for various discretizations with the Eulerian multi-fluid model (+: 100

sections, �: 50 section, *: 25 sections, �: 100 sections without collision).

532 F. Laurent et al. / Journal of Computational Physics 194 (2004) 505–543
interaction of two groups like the one proposed in this example [8]. In such a situation, the numerical

diffusion is introducing some artificial coupling at the dynamical level since only one velocity is prescribed

per section.

However, the results presented in Fig. 11 show that the mass evolution is very well captured, the dif-

ference with the reference solution stays below 1%. The evolution of the Sauter mean radius in Fig. 11-right

is also well captured. However, once 93% of the initial mass has evaporated, there is a little difference in the

mass density decrease which seems to be due to a difficulty to correctly reproduce the dynamics and size

distribution of the spray.
In order to have a more precise idea of what is happening, we have observed the mass distribution

function at the point z ¼ 10:53 cm as well as the velocity distribution as a function of the droplet size at this

point. It appears very clearly that the numerical diffusion, if too high, can smooth out the mass distribution

function and consequently the velocity distribution function because of the assumption, the Eulerian multi-

fluid model relies on. In the 25 sections case, the peaks of the distribution have disappeared and the velocity

distribution function has become monotone. This example allows to understand what will be the limits of

such an approach. However, the simulation with 100 sections allows to predict very accurately the various

peaks of the mass distribution function, as well as their dynamics, except for the very ‘‘big’’ droplets, the
velocity of which is becoming higher thus causing the difference to be observed in Fig. 11-right on the

Sauter mean radius. This discrepancy can be attributed to the numerical diffusion [28] which acts on a size

distribution function which is very singular and remains so through the coalescence phenomenon. The

smearing out of the peaked distribution is then coupled to the dynamics and coalescence phenomena; it

thus leads to a change in the Sauter mean diameter as observed in Fig. 11-right.

5.6. The unstationary case

In the same way as for the Lagrangian calculations, we have represented in Figs. 12–14, the averaged

quantities for this statistically stationary configuration as well as the instantaneous fields of mass density,

mean velocity and Sauter mean radius at a given time t ¼ 0:41 s. The simulations conducted with the

Eulerian multi-fluid model with three level of refinement, 15, 30 and 90 sections, are compared to the

‘‘reference’’ Lagrangian solution.



 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 20  25  30  35  40

m
as

s 
de

ns
ity

 (
g/

cm
^3

)

z (cm)

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 20  25  30  35  40

m
as

s 
de

ns
ity

 (
g/

cm
^3

)

z (cm)

Fig. 12. (left) Evolution of the temporal averaging of the liquid mass density for the Lagrangian reference solution (solid line), and for

various discretizations with the Eulerian multi-fluid model (dashed line: 90 sections; dotted line: 30 section; small dotted line: 15

sections), for the unstationary case with collisions, (right) evolution of the mass density of the liquid at t¼ 0.41 s for the Lagrangian

reference solutions (solid line), and for various discretizations with the Eulerian multi-fluid model (dashed line: 90 sections; dotted line:

30 section; small dotted line: 15 sections), for the unstationary case with collisions.
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Fig. 13. (left) Evolution of the temporal averaging of the axial mean velocity difference of the liquid for the Lagrangian reference

solution (solid line), and for various discretizations with the Eulerian multi-fluid model (dashed line: 90 sections; dotted line: 30 section;

small dotted line: 15 sections), for the unstationary case with collisions, (right) Evolution of the axial mean velocity difference of the

liquid at t¼ 0.41 s for the Lagrangian reference solutions (solid line), and for various discretizations with the Eulerian multi-fluid model

(dashed line: 90 sections; dotted line: 30 section; small dotted line: 15 sections), for the unstationary case with collisions.
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The chosen configuration is particularly interesting. The averaged mass as well as the instantaneous

spatial profile of mass density are well predicted by the three discretizations, even if one can observe a shift

in the oscillations starting around 33 cm for the discretization with 15 sections. Because of the coupling

between the dynamics of droplets of various sizes and the coalescence, the spray mean velocity profile,

which is the one of the gas at the injection, as well as the Sauter mean diameter, experiences strong

oscillations.

At this level, considering the complexity of the behavior of the size distribution of droplets, the dis-
cretization with 15 sections is not able to reproduce precisely the global dynamical behavior of the spray
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Fig. 14. (left) Evolution of the temporal averaging of the liquid Sauter mean radius for the Lagrangian reference solution (solid line),

and for various discretizations with the Eulerian multi-fluid model (dashed line: 90 sections; dotted line: 30 section; small dotted line: 15

sections), for the unstationary case with collisions, (right) evolution of the Sauter mean radius of the liquid at t¼ 0.41 s for the La-

grangian reference solutions (solid line), and for various discretizations with the Eulerian multi-fluid model (dashed line: 90 sections;

dotted line: 30 section; small dotted line: 15 sections), for the unstationary case with collisions.
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beyond z ¼ 30 cm, as represented in Fig. 13-left. The reason is the same as in the stationary bimodal case:

the numerical diffusion for this coarse discretization acting on a discontinuous size distribution function is

little by little coupled to the coalescence and size-conditioned dynamics. It results first in a damping of the

velocity and Sauter mean radius oscillations, and soon in a shift of these oscillations compared to the
reference solution. However, the discretizations with 30 and 90 sections lead to a satisfactory comparison

with this reference solution, even if the numerical diffusion still acts on the discontinuous size distribution

function and results in small discrepancies.

5.7. The zero dispersion assumption and the computational efficiency

In order to have a comprehensive picture for the discussion about the comparison of the Lagrangian and

Eulerian approaches, we still need to investigate two points. The first one is related to the fundamental
assumption on the velocity dispersion which allows the derivation of the semi-kinetic model and the second

one is related to the compared computational efficiency of these methods.

It is clear that the coalescence phenomenon is going to induce a velocity dispersion around the mean

value of the velocity. Let us first consider the stationary case with the monomodal distribution. We have

plotted, in Fig. 15, the velocity marginals for each droplet size at a given spatial point z ¼ 16:6 cm. Whereas

the small droplets have almost zero dispersion, it can reach 3% of the local mean velocity for the droplets of

radius around 40 lm. We have chosen this point because it is one of the points where this dispersion reaches

its maximum value as shown in Fig. 16-top where the variance of the dispersion relative to the local velocity
is presented as a function of spatial coordinate and droplet size. There are only three points where it goes

beyond 1.2% and reaches 3%, so that the vertical scale has been limited to 1.2% in order to describe the

global behavior if this dispersion. The same scale is chosen for the bimodal case represented in Fig. 16-

bottom without excluding any point. At the entrance of the nozzle, the dispersion is almost zero and it

increases for the droplets created by coalescence. However, because of the evaporation process and of the

drag force, the Stokes relaxation time of which is linear in the droplet surface, the size of the droplets

decreases with time and there velocity relaxes to the one on the gas thus limiting the velocity dispersion
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Fig. 15. Velocity marginals, for each droplet size, at z¼ 16.6 cm, for the monomodal case with coalescence.
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(Fig. 16). The presence of this dispersion is also related to the fact that the nozzle for the stationary cases

has been chosen such that the deceleration is very important.

For the unstationary case, where the deceleration is take at a little lower value, the dispersion stays below

2 per thousand. We have plotted in Fig. 17 the velocity marginals as a function of size at two locations

z ¼ 31:5 cm and z ¼ 27 cm at time t ¼ 0:41 s. It is clear that the dispersion is very limited.

Consequently, the assumption that there exists one characteristic velocity around which there is no

dispersion for a given time, a given location and a given size can be considered, at least in the test-cases we

have considered, as very realistic. If one would want to be able to tackle even more severe cases with much
bigger droplets for example, the dispersion would probably become larger and one would have to introduce

a ‘‘temperature’’ for each ‘‘fluid’’, as we have proposed in the turbulent case in [25].

The second point, which is important, is the computational efficiency of the Eulerian multi-fluid model as

compared to the Lagrangian one. Before going into the numbers, let us underline that such results can only

provide an indication since the structure of the two codes are completely different and since we only consider

here the solver for the liquid phase, whereas a major advantage of the Eulerian approach is that it leads to

the capability of optimizing the two coupled Eulerian solvers for the gas and the liquid phase. Nevertheless,

on a recent PC workstation, the simulation of the injection of the spray in an empty nozzle at t ¼ 0 until
t ¼ :41 s with the beginning of the mass oscillations at the injection point at t ¼ :332 s takes 3.4 min with

Eulerian approach with 15 sections, 11.8 with 30 sections and 87 with 90 sections, whereas it takes 2.8 min

for the case Lag. Unst. 1, 40 for the second one and 213 for the third one. Consequently, for a reasonable

level of precision reached for example by the intermediate simulations with both solvers, the Eulerian one is

comparable but a little cheaper. Even if we understand the limits of such a comparison, it shows that the

Eulerian multi-fluid model is going to be able to reach a very reasonable level of precision for a compu-

tational cost which is lower but comparable to the Lagrangian approach; however it is going to allow

optimization of coupled Eulerian solvers for the gas and the liquid and to avoid, in higher-dimensional



Fig. 16. (top) Evolution of the velocity dispersion compared to the square of the mean velocity for each droplet size, for the

monomodal case with coalescence, (bottom) evolution of the velocity dispersion compared to the square of the mean velocity for each

droplet size, for the bimodal case with coalescence.
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configuration, the problem of small numbers of particles in computational cell, a crucial problem in

combustion applications.
6. Discussion and conclusion

We have proposed a new Eulerian multi-fluid approach in order to simulate polydisperse evaporating

dense sprays. This approach can be rigorously derived from the Williams p.d.f. equation at the kinetic level
and allows for a description of the droplet coalescence phenomenon, an uncommon feature of the usual

Eulerian models. The main advantage of such an approach, which can be thought of as intermediate be-

tween discrete particle Lagrangian solvers and two-fluid models, is that it provides an adaptable level of

information about the size distribution depending on the problem to be solved.

We have proved the ability of such a method to reproduce the solution provided by a reference La-

grangian solver in the configuration of a 2D axisymmetrical nozzle configuration with both stationary and

unstationary test-cases. These test-cases have been described and explained to be complex enough con-

figurations, since the problem is essentially unstationary, 2D in space (reduced to 1D by similarity) and 1D



Fig. 17. (top) Velocity marginals, for each droplet size, at z¼ 31.25 cm, for the unstationary case with coalescence, (bottom) velocity

marginals, for each droplet size, at z¼ 27.00 cm, for the unstationary case with coalescence.
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in size phase space and involves strong couplings between evaporation, dynamics and coalescence. The

limitations of the approach have been presented as well as its strength. In particular, the assumptions

underlying the model have been shown to be very reasonable by considering the reference solution and the

question of zero velocity dispersion at a given time, given space location and droplet size has been ad-

dressed and shown to be a good approximation.

The Eulerian multi-fluid model is able to reproduce the global qualitative behavior of the spray with a

very limited number of unknowns at a very low computational cost. In such a case, where a particulate
Lagrangian solver produces artificial fluctuations due to the limited number of particles for a comparable

computational cost, the Eulerian solver smoothens out the fluctuations artificially and does not yield precise

solutions. In order to be quantitative, the size discretization necessary to approximate the reference
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Lagrangian solution obtained with a very large number of particles leads to a reasonable computational

cost as compared with the same level of precision for the Lagrangian solver. However, the numerical

diffusion in the size phase space in order to describe the evaporation phenomenon results in a difficulty to
deal with singular size distributions like discontinuous or Dirac delta functions. In such a situation, it

introduces artificial small couplings and smoothens out the details of the fluctuations of the dynamics of the

droplets. This can be related to the only first-order in the size variable of the approach as studied in [28].

However, it yields a computational tool, complementary to the class of Lagrangian solvers, which is able,

for the first time, to describe the details of the size distributions of a spray constituted of droplets having

their own inertia, in a Eulerian way.

In a recent work, the premises of which are presented in [22,24,28], we have introduced a new high order

method for the evaporation which can be extended to dense sprays with coalescence. This will allow to
further reduce the number of sections thus reinforcing the efficiency of the tool we have developed for more

complex configurations and leading to a new class of refined Eulerian solvers as compared to the ones of

two-fluid type.
Acknowledgements

We would like to thank R.O. Fox for several helpful discussions.
Appendix A

The purpose of this Appendix is to restore the details of the proof of Proposition 3.1 of Section 3.1. We

have seen that the assumption of zero dispersion is not compatible with the coalescence term and the

conservation of momentum. Starting from assumptions [H1] and [H3], we then consider a small and

uniform dispersion r which is going to converge to zero and make the following assumption instead of [H2]:
[D1] At a given size, the velocity distribution in each space direction, k ¼ 1;K, is a Gaussian function ur of

dispersion r around ukðt; x; vÞ:

f ðt; x; v; uÞ ¼ nðt; x; vÞ
YK
k¼1

ur ukð � ukðt; x; vÞÞ: ðA:1Þ

Let us notice that [D1] implies [H1]. We then use the same arguments as in [8] in order to obtain the

macroscopic conservation equations when coalescence is present through the collisional operator C. The
transport Eq. (2.1) is multiplied by 1 and u; we then integrate with respect to the velocity variable. We then

obtain a first set of conservation equations parametrized by the size of the droplets:

otnþ ox � ðnuÞ þ ovðnRvÞ ¼ � nðvÞ
Z
v�
nðv�Þbðv; v�ÞI�n dv�

þ 1

2

Z
v�2½0;v�

nðv}ðv; v�ÞÞnðv�Þbðv}ðv; v�Þ; v�ÞIþn dv�; ðA:2Þ
otðnuÞ þ ox � ðnu� uþ nPðrÞÞ þ ovðnRvuÞ � nF ¼ � nðvÞ
Z
v�
nðv�Þbðv; v�ÞI�u dv�

þ 1

2

Z
v�2½0;v�

nðv}ðv; v�ÞÞnðv�Þbðv}ðv; v�Þ; v�ÞIþu dv�;

ðA:3Þ
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where F is the Stokes�s drag force taken at u ¼ u and where the partial collisional integrals I�n , I
þ
n , I

�
u and Iþu

take the following expressions:

I�n ðv; v�; rÞ ¼
Z Z
u;u�

ju� u�jurðu� uðvÞÞurðu� � uðv�ÞÞdudu�; ðA:4Þ
I�u ðv; v�; rÞ ¼
Z Z
u;u�

uju� u�jurðu� uðvÞÞurðu� � uðv�ÞÞdudu�; ðA:5Þ
Iþn ðv; v�; rÞ ¼
Z Z
u};u�

ju} � u�jurðu� � uðv�ÞÞurðu} � uðv� v�ÞÞdu} du�; ðA:6Þ
vIþu ðv; v�; rÞ ¼
Z Z
u};u�

ðv
�

� v�Þu} þ v�u�Þ
�
ju} � u�jurðu� � uðv�ÞÞurðu} � uðv� v�ÞÞdu} du�: ðA:7Þ

In the previous expressions, we have used the new velocity variables ðu}; u�Þ in the creation integrals. It is

here fundamental that assumptions [D1] and [H3] are satisfied, i.e. that the support of the distributions in

size and velocities is really the whole space ðv; uÞ 2 ð0;þ1Þ � RK so that all the collisions can be described

by our model.

Lemma 8.1. When the dispersion r goes to zero, we have the following convergence:

P ! OK�K ; I�n ! juðvÞ � uðv�Þj; I�u ! uðvÞjuðvÞ � uðv�Þj; ðA:8Þ
Iþn ! juðv�Þ � uðv� v�Þj; vIþu ! ðvð � v�Þuðv� v�Þ þ v�uðv�ÞÞjuðv�Þ � uðv� v�Þj: ðA:9Þ
Proof. It can be easily proved that, up to an error linear in the dispersion r, it is sufficient to consider the 1D

case. We then switch to the polar coordinates around the point ðuðvÞ; uðv�ÞÞ with W ¼ uðvÞ � uðv�Þ.

I�n ¼
Z Z

r;h

r expð�r2=r2Þ
r2

jrðcosðhÞ � sinðhÞÞ þWjdrdh:

Two cases are then to be distinguished, either W ¼ 0 and I�n ¼
ffiffiffiffiffiffi
2p

p
r, either W 6¼ 0 and I�n �W ! 0 when r

becomes lower than the distance between W and 0 so that the Gaussian distribution approaches a Dirac

delta function.

I�n �W ¼
Z Z

r;h

r expð�r2=r2Þ
pr2

jrðcosðhÞð � sinðhÞÞ �Wj �WÞdh:

For all given e and W, there exists a small disk D of radius d around zero such that on D, jrðcosðhÞ�
sinðhÞÞ �Wj �W6 e=2 and there exists r such that on the complementary of D, the previous integral is

lower than e=2; consequently, I�n �W ! 0 as r ! 0. The other integrals are treated following the same

arguments. �

Finally if we pass to the limit of zero dispersion in Eqs. (A.2) and (A.3), we obtain the semi-kinetic model

presented in Section 3.1 by Eqs. (3.1) and (3.2) and the proof is complete.
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Appendix B

The purpose of the present Appendix is to restore the details of the evaluation of the quadratic coa-

lescence terms in the conservation Eqs. (3.6)–(3.9) from the semi-kinetic model (3.1) and (3.2).

Let us come back to the definition of the coalescence terms in (3.6) and (3.7):
CðjÞ
m ¼ �

XN
k¼1

mðkÞ
Z vðjþ1Þ

vðjÞ
qlv

�f ðv�Þ
Z vðkÞ

vðk�1Þ
f ðvÞBðuðjÞ � uðkÞ; v; v�Þdv� dv

þ 1

2

Z Z
D}�
j

qlnðv}Þnðv�Þðv} þ v�ÞBðuðv�Þ � uðv}Þ; v�; v}Þdv� dv}; ðB:1Þ
CðjÞ
mu ¼ � mðjÞuðjÞ

XN
k¼1

mðkÞ
Z vðjÞ

vðj�1Þ
qlv

�f ðv�Þ
Z vðkÞ

vðk�1Þ
f ðvÞBðuðjÞ � uðkÞ; v; v�Þdv� dv

þ 1

2

Z Z
D}�
j

qlnðv}Þnðv�Þðv}uðv}Þ þ v�uðv�ÞÞBðuðv�Þ � uðv}Þ; v�; v}Þdv� dv}: ðB:2Þ
At this level, we make assumption (3.5) on n and f in such a way that we introduce the mass densities in

the sections mðjÞ. Besides, we take advantage of the fact that the velocity is constant inside a section, so that

the right integration supports are introduced:
CðjÞ
m ¼ � mðjÞ

XN
k¼1

mðkÞVjk

Z Z
Ljk

qlvj
ðjÞðvÞjðkÞðv�Þbðv; v�Þdvdv�

þ 1

2

XIðjÞ
i¼1

mðo}ji Þmðo�jiÞVo}ji o�ji

Z Z
Xji

qlv
}jðo}ji Þðv}Þjðo�jiÞðv�Þbðv}; v�Þdv� dv}

0
B@

þ
Z Z

Xji

qlv
�jðo}ji Þðv}Þjðo�jiÞðv�Þbðv}; v�Þdv� dv}

þ
Z Z
X sym
ji

qlv
}jðo�jiÞðv}Þjðo}ji Þðv�Þbðv}; v�Þdv� dv}

þ
Z Z
X sym
ji

qlv
�jðo�jiÞðv}Þjðo}ji Þðv�Þbðv}; v�Þdv� dv}

1
CCA; ðB:3Þ
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CðjÞ
mu ¼ � mðjÞuðjÞ

XN
k¼1

mðkÞVjk

Z Z
Ljk

qlvj
ðjÞðvÞjðkÞðv�Þbðv; v�Þdvdv�

þ 1

2

XIðjÞ
i¼1

mðo}ji Þmðo�jiÞVo}ji o�ji
uðo

}
ji Þ
Z Z

Xji

qlv
}jðo}ji Þðv}Þjðo�jiÞðv�Þbðv}; v�Þdv�dv}

0
BB@

þ uðo
�
jiÞ
Z Z

Xji

qlv
�jðo}ji Þðv}Þjðo�jiÞðv�Þbðv}; v�Þdv� dv}

þ uðo
�
jiÞ
Z Z
X sym
ji

qlv
}jðo�jiÞðv}Þjðo}ji Þðv�Þbðv}; v�Þdv� dv}

þ uðo
}
ji Þ
Z Z
X sym
ji

qlv
�jðo�jiÞðv}Þjðo}ji Þðv�Þbðv}; v�Þdv� dv}

1
CCA: ðB:4Þ

This yields the final system of equations and we recall the expression of the collisional integrals:

Qjk ¼
Z Z

Ljk

qlvj
ðjÞðvÞjðkÞðv�Þbðv; v�Þdvdv�; Q}

ji ¼
Z Z

Xji

qlv
}jðo}ji Þðv}Þjðo�jiÞðv�Þbðv}; v�Þdv� dv};
Q�
ji ¼

Z Z
Xji

qlv
�jðo}ji Þðv}Þjðo�jiÞðv�Þbðv}; v�Þdv� dv} ¼

Z Z
X sym
ji

qlv
}jðo�jiÞðv}Þjðo}ji Þðv�Þbðv}; v�Þdv�dv}:

We have represented the strip D}�
4 , X4i, i ¼ 1; 4 and X sym

4i ; i ¼ 1; 2 in Fig. 1, as well as the rectangular
integration domains L42 and L24 for the disappearance operator. Let us recall

D}�
j ¼

[N
k¼2

[k�1

l¼1

Lkl \ D}�
j

� �
[ Llk \ D}�

j

� �
¼
[IðjÞ
i¼1

Xji [ X sym
ji

� �
;Xji ¼ Lo}ji o

�
ji
\ D}�

j :

For j ¼ 4; i ¼ 1, X41 corresponds to o}41 ¼ 3 and o�41 ¼ 1. let us notice that two droplets in the same section
can not coalesce since the velocity difference between them is zero. The conservation of mass and mo-

mentum are based on

R2
þ ¼

[N
j¼1

[N
k¼1

Ljk ¼
[N
j¼1

[IðjÞ
i¼1

Xji [ X sym
ji

� �
[
[N
j¼1

Ljj;

an equality that can be easily observed in Fig. 1.
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